Ai giúp mk vs
Cho hình bình hành ABCD có góc BAD=60°,AC=8cm. Kẻ CH┻AD , CK┻AB .Tính HK?
2. Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD, kẻ CH vuông góc AD, CK vuông góc AB
a) Chứng minh tam giác CKH đồng dạng tam giác BCA
b) Chứng minh HK=Ac.sinBAD
c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm
GIẢI:
a) Chứng minh tam giác CKH đồng dạng tam giác BCA
AKC^ + ABC^ = 2v => AKCH nội tiếp
=> CHK^ = CAB^ (1) ( cùng chắn cung CK)
CKH^ = CAH^ (2) ( cùng chắn cung CH)
CAH^ = ABC^ (3) ( so le trong)
(2) và (3) => CKH^ = ACB^ (4)
(1) và (4) => ΔCKH ~ ΔBCA (g.g)
b) Chứng minh HK=AC.sinBAD
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị)
=> HK = AC.sin(BAD^)
c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm
AB = CD = 4
CDH^ = BAD^ = 60*
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4)
DH = CD/2 = 4/2 = 2
=> AH = AD + DH = 5 + 2 = 7
AD = BC = 5
CBK^ = BAD^ = 60*
=> CK = 5.√3/2
BK = BC/2 = 5/2
=> AK = AB + BK = 4 + 5/2 = 13/2
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8
chúc bạn học tốt
cho hình bình hành ABCD, đường chéo AC lớn hơn đường chéo BD. Kẻ CH vuông góc với AD, CK vuông góc với AB
, Tính diện tích am giác CKH ,tứ giác AKCH nếu góc BAD=60, AB=4cm,AD=5cm
Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD
Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD
Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD
Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD
Xét ΔABD có
\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2\cdot AB\cdot AD}\)
=>\(8^2+6^2-BD^2=2\cdot8\cdot6\cdot cos60=48\)
=>\(BD^2=100-48=52\)
=>\(BD=2\sqrt{13}\left(cm\right)\)
Xét ΔBAC có \(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(8^2+6^2-AC^2=2\cdot8\cdot6\cdot cos120=-48\)
=>\(AC^2=148\)
=>\(AC=2\sqrt{37}\left(cm\right)\)
Cho hình bình hành ABCD có AC là đường chéo lớn, kẻ CH vuông góc AD ( H thuộc AD ) và CK vuông góc AB ( K thuộc AB )
a) CMR : \(\frac{CK}{CH}=\frac{CB}{CD}\)
b) CMR : tam giác CKH đồng dạng tam giác ABC
c) CMR : HK = AC . sin BAD
â)Cm tam giác CBK đồng dạng với tam giác CDH(g.g) (tự cm nha )
>>>CK/CH=CB/CD(đpcm)
b)CK/CH=CB/CD>>>CK/CB=CH/CD=CH/AB.Mà HCK=90 độ +KCB=ABC
>>>Tam giác CKH đồng dạng tam giác BCA(đpcm)
c)>>>HK/AC=CK/BC=sinKBC=sinBAD>>>HK=AC.sinBAD(đpcm)
câu b mình ko hiểu cho lắm bạn có giải thích rõ hơn đc ko
Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD
Vậy ΔHCK∼ΔABC(g−g)
Từ đó suy ra \(\frac{HK}{AC}=\frac{HC}{AB}=sinABD\Rightarrow HK=AC.sinABD\)
Hình 2: Tứ giác nội tiếp ABCD
Một tứ giác lồi là tứ giác nội tiếp khi và chỉ khi bốn đường trung trực của bốn cạnh đồng quy tại một điểm. Điểm đồng quy này chính là tâm đường tròn nội tiếp.[1]
Tứ giác ABCD nội tiếp khi và chỉ khi hai góc đối bù nhau, tức là[1]
{\displaystyle \alpha +\gamma =\beta +\delta =180^{\circ }.} Ở đây {\displaystyle \alpha =\angle DAB,\beta =\angle ABC,\gamma =\angle BCD,\delta =\angle CDA}
Định lý trên được nêu trong bộ Cơ bản của Euclid.[2] Từ đó ta có khẳng định sau: Một tứ giác nội tiếp khi và chỉ khi một góc trong bằng góc kề bù của góc đối đỉnh góc đó.
Một trong các dấu hiệu nhận biết quan trọng khác để tứ giác ABCD nội tiếp là tứ giác có hai góc bằng nhau cùng nhìn một cạnh của tứ giác đó[3] Ví dụ như: {\displaystyle \angle ACB=\angle ADB.}
Định lý Ptoleme cũng chỉ ra rằng một tứ giác nội tiếp khi và chỉ khi tích hai đường chéo bằng tổng của tích hai cặp cạnh đối, tức là:[4]:p.25
{\displaystyle \displaystyle ef=ac+bd.}
Nếu hai đường thẳng lần lượt chứa hai đoạn thẳng AC và BD, cắt nhau tại P, thì A, B, C, D đồng viên khi và chỉ khi:[5]
{\displaystyle \displaystyle AP\cdot PC=BP\cdot PD.}
Giao điểm P có thể nằm trong hoặc nằm ngoài đường tròn. Trong trường hợp nằm trong, tứ giác lồi nội tiếp là ABCD, còn trong trường hợp còn lại, tứ giác nội tiếp là ABDC.
Một dấu hiệu nhận biết khác là tứ giác ABCD nội tiếp khi và chỉ khi:[6]
{\displaystyle \tan {\frac {\alpha }{2}}\tan {\frac {\gamma }{2}}=\tan {\frac {\beta }{2}}\tan {\frac {\delta }{2}}=1.}