Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khanh Lê

Cho hình bình hành ABCD có AC là đường chéo lớn. Kẻ CH vuông góc với AD, H thuộc AD và CK vuông góc với AB, K thuộc AB. Chứng minh tam giác CKH đồng dạng với tam giác ABC và HK= AC.sin BAD

Bài tập Tất cả

Park 24
24 tháng 6 2016 lúc 14:07
Do góc AHC và AKC vuông nên từ giác AHCK nội tiếp, từ đó suy ra góc CHK = góc CAB, góc CKH = CAH = ACB. 

Vậy ΔHCKΔABC(gg) 

Từ đó suy ra \(\frac{HK}{AC}=\frac{HC}{AB}=sinABD\Rightarrow HK=AC.sinABD\)

 
lechichung
5 tháng 10 2018 lúc 21:34
Đặc điểm, tính chất, dấu hiệu nhận biết tứ giác nội tiêp

Hình 2: Tứ giác nội tiếp ABCD

Một tứ giác lồi là tứ giác nội tiếp khi và chỉ khi bốn đường trung trực của bốn cạnh đồng quy tại một điểm. Điểm đồng quy này chính là tâm đường tròn nội tiếp.[1]

Tứ giác ABCD nội tiếp khi và chỉ khi hai góc đối bù nhau, tức là[1]

{\displaystyle \alpha +\gamma =\beta +\delta =180^{\circ }.} Ở đây {\displaystyle \alpha =\angle DAB,\beta =\angle ABC,\gamma =\angle BCD,\delta =\angle CDA}

Định lý trên được nêu trong bộ Cơ bản của Euclid.[2] Từ đó ta có khẳng định sau: Một tứ giác nội tiếp khi và chỉ khi một góc trong bằng góc kề bù của góc đối đỉnh góc đó.

Một trong các dấu hiệu nhận biết quan trọng khác để tứ giác ABCD nội tiếp là tứ giác có hai góc bằng nhau cùng nhìn một cạnh của tứ giác đó[3] Ví dụ như: {\displaystyle \angle ACB=\angle ADB.}

Định lý Ptoleme cũng chỉ ra rằng một tứ giác nội tiếp khi và chỉ khi tích hai đường chéo bằng tổng của tích hai cặp cạnh đối, tức là:[4]:p.25

{\displaystyle \displaystyle ef=ac+bd.}

Nếu hai đường thẳng lần lượt chứa hai đoạn thẳng ACBD, cắt nhau tại P, thì A, B, C, D đồng viên khi và chỉ khi:[5]

{\displaystyle \displaystyle AP\cdot PC=BP\cdot PD.}

Giao điểm P có thể nằm trong hoặc nằm ngoài đường tròn. Trong trường hợp nằm trong, tứ giác lồi nội tiếp là ABCD, còn trong trường hợp còn lại, tứ giác nội tiếp là ABDC.

Một dấu hiệu nhận biết khác là tứ giác ABCD nội tiếp khi và chỉ khi:[6]

{\displaystyle \tan {\frac {\alpha }{2}}\tan {\frac {\gamma }{2}}=\tan {\frac {\beta }{2}}\tan {\frac {\delta }{2}}=1.}


Các câu hỏi tương tự
Văn Hoàng Huy
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Cao Hà Phương
Xem chi tiết
Thao Van
Xem chi tiết
Trần Hữu Lộc
Xem chi tiết
Toàn Trần
Xem chi tiết
Tung Nguyễn
Xem chi tiết
YiBi YiBi
Xem chi tiết
Thùy Thùy
Xem chi tiết