chứng minh rằng :
C = 1+3^2+3^3+...+3^11
C chia hết cho 13
C chia hết cho 40
C = 1 +3 +3 ^ 2 +...........+ 3 ^99 . Chứng minh rằng
a,C chia hết cho 4 b, C chia hết cho 40
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
Cho C 1 3 3 2 3 3 ... 3 11. Chứng minh rằng a, C chia hết cho 13b, C chia hết cho 40
CHỨNG MINH RẰNG
A)342005-342004 chia hết cho 17
B)432004+432005 chia hết cho 11
C)273+95 chia hết cho 4
D)n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
a) Ta có: \(34^{2005}-34^{2004}\)
\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)
b) Ta có: \(43^{2004}+43^{2005}\)
\(=43^{2004}\left(1+43\right)\)
\(=43^{2004}\cdot44⋮11\)
c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)
d) Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
d. Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=\) \(2n^2-3n-2^2-2n\)
\(=\) \(-5n\)
Vậy n ( 2n - 3 ) - 2n ( n + 1 ) \(⋮\) 5 với mọi số nguyên n
Cho biểu thức
B=5+5 mũ 1 +5 mũ 2 +........+5 mũ 30
Chứng minh rằng : b chia hết 6; b chia hết 31
C= 1+3+3 mũ 2+ ........+ 3 mũ 11 . Chứng minh rằng : c chia hết cho 13; c chia hết cho 40
cho C=5+5mũ 2 + 5 mũ 3+.....+5 mũ 20
a)chứng minh c chia hết cho 5
b)chứng minh c chia hết cho 6
c)chứng minh c chia hết cho 1
bài 3
cho C=1+3+3 mũ 2 +...+3 mũ 11.Chứng minh C chia hết 40
Cho C=1+3+3^2+3^3+...+3^20. Chứng minh rằng:
a, C chia hết cho 13
b, C chia hết cho 40
Cho C= 1+3+3^2+3^3+...+3^11. Chứng minh rằng
a, C chia hết cho 13
b, C chia hết cho 40
\(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+......+\left(3^9+3^{10}+3^{11}\right)\)
\(C=13.1+3^3.13+......+3^9.13\)
\(C=13.\left(1+3^3+3^6+3^9\right)\)
Chia hết cho 13
\(C=\left(1+3+3^2+3^3\right)+......+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(C=40.1+40.3^4+40.3^8\)
\(C=40.\left(1+3^4+3^8\right)\)
Chia hết cho 40
Cho A = 1-3+3 mũ 2-3 mũ 3+3 mũ 4-3 mũ 5+.....+3 mũ 98-3 mũ 99 chứng to A chia hết cho 20
cho C=1+3+3^2+........+3^11
chứng minh rằng:
a)C chia hết cho 13
b)C chia hết cho 40
Cho S = 1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40