Xét vị trí tương đối của cặp đường thẳng sau đây:
d1 :8x + 10y – 12 = 0 ; d2 :
Xét vị trí tương đối của các cặp đường thẳng d1 và d2 sau đây:
Cách 1: Dựa vào số nghiệm của hệ phương trình:
a) Xét hệ phương trình
Hệ phương trình có nghiệm duy nhất nên (d1) cắt (d2).
b) Xét hệ phương trình
Hệ phương trình trên vô nghiệm nên hai đường thẳng trên song song.
c) Xét hệ phương trình
Hệ phương trình trên có vô số nghiệm nên hai đường thẳng trùng nhau.
Cách 2: Dựa vào vị trí tương đối của các vectơ chỉ phương (hoặc vectơ pháp tuyến).
a) d1 nhận là một vectơ pháp tuyến
d2 nhận là 1 vtpt
Nhận thấy không cùng phương nên d1 cắt d2.
b) d1 nhận là 1 vtpt ⇒ d1 nhận là 1 vtcp
d2 nhận là 1 vtcp.
Nhận thấy cùng phương
⇒ d1 và d2 song song hoặc trùng nhau.
Xét điểm M(5;3) có:
M(5; 3) ∈ d2
12.5 – 6.3 + 10 = 52 ≠ 0 nên M(5; 3) ∉ d1.
Vậy d1 và d2 song song.
c) d1 nhận là 1 vtpt ⇒ d1 nhận là 1 vtcp.
d2 nhận là 1 vtcp.
Nhận thấy cùng phương
⇒ d1 và d2 song song hoặc trùng nhau.
Xét M(–6; 6) ∈ d2; M(–6; 6) ∈ d1 (Vì 8.(–6) + 10.6 – 12 = 0)
⇒ d1 và d2 trùng nhau.
Xét vị trí tương đối của cặp đường thẳng sau đây:
d1 4x – 10y + 1 = 0 ; d2 : x + y + 2 = 0
Xét hệ
D = 4.1 = 10.1 = -6 ≠ 0
Vậy d1 và d2 cắt nhau
Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây: ( α 3 ): x – y + 2z – 4 = 0, ( α ' 3 ): 10x − 10y + 20z – 40 = 0
cho đường thẳng d1 : y = -2x+3 d2: y = -2x + m d3 : y = 1/2 x + 1 a) xét vị trí tương đối của hai đường thẳng d1 và d2 b) xét vị trí tương đối của hai đường thẳng d2 và d3
d1//d2 vì chung hệ số của x là -2
d2 cắt d3 do các hệ số a,b đều khác nhau
Xét vị trí tương đối của đường thẳng Δ: x – 2y + 1 = 0 với mỗi đường thẳng sau:
d1: -3x + 6y – 3 = 0;
d2: y = -2x;
d3: 2x + 5 = 4y.
Xét Δ và d1, hệ phương trình: có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.
Xét Δ và d2, hệ phương trình: có nghiệm duy nhất (-1/5; 2/5) nên
Δ cắt d2 tại điểm M(-1/5; 2/5).
Xét Δ và d3, hệ phương trình: vô nghiệm
Vậy Δ // d3
Xét vị trí tương đối của hai đường thẳng d 1 : 3 x − 2 y − 6 = 0 và d 2 : 6 x − 2 y − 8 = 0
A. Trùng nhau.
B. Song song.
C. Vuông góc với nhau.
D. Cắt nhau nhưng không vuông góc nhau.
Cho 2 đường thẳng d1: 5x-7y+4=0; d2: 5x-7y+6=0 a)Xét vị trí tương đối của d1 và d2 b) tính d(d1;d2)
Xác định vị trí tương đối của 2 đường thẳng sau đây: (d1): x- 2y+ 1=0 và (d2): -3x+ 6y-1 =0 .
A. Song song.
B. Trùng nhau.
C. Vuông góc nhau.
D. Cắt nhau.
Đường thẳng (d1) có vtpt và
d2 có vtpt
Hai đường thẳng này có
nên hai đường thẳng này song song với nhau.
Chọn A.
Xét vị trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau: d : x + 1 1 = y - 1 2 = z + 3 3