SO SÁNH
\(\frac{13}{20}\)và \(\frac{100}{101}\)
So sánh A = \(\frac{20^{102}+1}{20^{101}+1}\) và B = \(\frac{20^{101}+1}{20^{100}+1}\)
áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)
Ta có: \(A=\frac{20^{102}+1}{20^{101}+1}< \frac{20^{102}+1+19}{20^{101}+1+19}=\frac{20.\left(20^{101}+1\right)}{20.\left(20^{100}+1\right)}=\frac{20^{101}+1}{20^{100}+1}\)
\(\Rightarrow A< B\)
Cho A= \(\frac{20^{102}+1}{20^{101}+1}\); B= \(\frac{20^{101}+1}{20^{100}+1}\). So sánh A và B
so sánh các phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(20A=\dfrac{20^{101}-1-19}{20^{101}-1}=1-\dfrac{19}{20^{101}-1}\)
\(20B=\dfrac{20^{102}-1-19}{20^{102}-1}=1-\dfrac{19}{20^{102}-1}\)
mà \(\dfrac{-19}{20^{101}-1}< \dfrac{-19}{20^{102}-1}\)
nên A<B
So sánh 2 phân số sau:
\(\frac{20^{100}-1}{20^{101}-1}\) và \(\frac{20^{101}-1}{20^{102}-1}\)
\(\frac{20^{101}-1}{20^{102}-1}>\frac{20^{101}-20}{20^{102}-20}=\frac{20.\left(20^{100}-1\right)}{20.\left(20^{101}-1\right)}=\frac{20^{100}-1}{20^{101}-1}\)
\(\Rightarrow\frac{20^{101}-1}{20^{102}-1}>\frac{20^{100}-1}{20^{101}-1}\)
So sánh A=\(\frac{101+100}{101-100}\)và B=\(\frac{101^2+100^2}{101^2-100^2}\)
so sánh các phân số sau theo cách thuận tiện:
\(\frac{13}{19};\frac{47}{53};\frac{-13}{-20}\)
\(\frac{125}{131};\frac{117}{109};\frac{101}{93}\)
Dễ ợt! Đại ca toàn đây
Bài 1: Chứng minh B = \(3^{21}+3^{22}+3^{23}+.........+3^{29}\) chia hết cho 13
Bài 2: So sánh \(\frac{100}{11^{11}}+\frac{100}{11^{12}}\)và \(\frac{99}{11^{11}}+\frac{101}{11^{12}}\)
3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*3^21+13*3^24+13*3^27=13*(3^21+3^24+3^27)chia hết cho 13
Giải nghĩa ^:mũ
*:nhân
\(\frac{10}{11}x\frac{12}{13}:\frac{50}{51}-\frac{19}{20}x\frac{12}{13}:\frac{101}{102}+\frac{99}{100}\)
So sánh A = \(\frac{100^{100}+1}{100^{99}+1}\)và B=\(\frac{100^{101}+1}{100^{100}+1}\)
Ta có: Theo cách tính phân số dư , phân số nào có phần dư lớn hơn thì lớn hơn.
\(\frac{100^{^{100^{ }}}+1}{100^{99}+1}\)\(-1\)=\(\frac{100^{100}}{100^{99}+1}-100^{99}\)
\(\frac{100^{101}+1}{100^{100}+1}-1=\frac{100^{101}-100^{100}}{100^{100}+1}\)
Suy ra:A>B