Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Văn Bách
Xem chi tiết
Đặng Phương Anh
Xem chi tiết
Darlingg🥝
27 tháng 6 2020 lúc 12:00

Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=A+3A=\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.....\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....\frac{1}{3^{98}}-\frac{1}{3^{99}}\Rightarrow4A< B\left(1\right)\)

\(\Rightarrow3B=3-1+\frac{1}{3}-\frac{1}{3^2}+....\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(4B=B+3B=3-\frac{1}{3^{99}}< 3\Rightarrow4B< 3\Rightarrow B< \frac{3}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4A< B< \frac{3}{4}\Rightarrow4A< \frac{3}{4}\Rightarrow A< \frac{3}{4}:4\Rightarrow A< \frac{3}{4}.\frac{1}{4}\Rightarrow A< \frac{3}{16}\)

=> đpcm.

Khách vãng lai đã xóa
Trần Minh Hưng
Xem chi tiết
Say You Do
18 tháng 3 2016 lúc 22:19

Đặt A=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) +\(\frac{3}{3^3}\) - \(\frac{4}{3^4}\)+...+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)

=> 3A=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\)+...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4A=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)\(\frac{100}{3^{100}}\)

=> 4A<1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\) (1)

Đặt B=1-\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{3^{98}}\) - \(\frac{1}{3^{99}}\)

=> B=2+ \(\frac{1}{3}\) - \(\frac{1}{3^2}\) +...+\(\frac{1}{3^{97}}\) - \(\frac{1}{3^{98}}\)

=> 4B=B+3B=3-\(\frac{1}{3^{99}}\)<3 => A<\(\frac{3}{4}\) (2)

Từ (1) và (2) ta có: 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

Say You Do
18 tháng 3 2016 lúc 21:58

Bạn ơi, mình cx đang nghĩ câu này.

Say You Do
18 tháng 3 2016 lúc 22:04

ok mình nghĩ ra rồi.

NGUYEN NHATMINH
Xem chi tiết
ST
17 tháng 1 2018 lúc 5:38

Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(3A+A=4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4A< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)

Đặt \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3B=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(B+3B=4B=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow B< \frac{3}{4}\) (2)

Từ (2) và (2) => \(4A< B< \frac{3}{4}\Rightarrow A< \frac{3}{16}\) (đpcm)

NGUYEN NHATMINH
18 tháng 1 2018 lúc 8:57

\(A=\frac{7n-1}{4};B=\frac{5n+3}{12}\)

Tìm n để A,B đồng thời là các số nguyên tố

Lâm Đỗ
Xem chi tiết
Nguyễn Thị Khánh Huyền
Xem chi tiết
Nguyễn Thị Khánh Huyền
14 tháng 7 2016 lúc 20:22

Nhầm đầu bài nhoa:

Phải là  \(-\frac{100}{3^{100}}\)

Mai Thị Phương Anh
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Bùi Minh Nguyệt
Xem chi tiết
Cơn Gió Buồn
Xem chi tiết

Công ty cổ phần BINGGROUP © 2014 - 2024
Liên hệ: Hà Đức Thọ - Hotline: 0986 557 525 - Email: a@olm.vn hoặc hdtho@hoc24.vn