cho a/b =b/c=c/a và a+b+c khác 0
Tính a3.b2.c2021/ a2026
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
Cho a 3 + b 3 + c 3 = 3 a b c và a + b + c ≠ 0.Tính giá trị của biểu thức A = a 2 + b 2 + c 2 ( a + b + c ) 2
Cho b2=a.c và c2=b.d (a b c d là các số khác 0 b+c khác d và b3+c3 khác d3
Chứng minh rằng a3+b3−c3/b3+c3−d3=(a+b−c/b+c−d)3
cho a,b,c khác 0 và không đối nhau từng đôi một thỏa mãn: 2021a+b+c+d/a=a+2021b+c+d/b=a+b+c2021+d/c=a+b+c+2021d/d
tính giá trị biểu thức M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
cho a,b,c khác 0 và không đối nhau từng đôi một thỏa mãn: 2021a+b+c+d/a=a+2021b+c+d/b=a+b+c2021+d/c=a+b+c+2021d/d
tính giá trị biểu thức M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c
Trong không gian Oxyz, cho hai vector a → = a 1 , a 2 , a 3 , b → = b 1 , b 2 , b 3 khác 0 → . Tích có hướng của a → và b → là c → . Câu nào sau đây đúng?
A. c → = a 2 b 3 - a 3 b 2 , a 3 b 1 - a 1 b 3 , a 1 b 2 - a 2 b 1
B. c → = a 1 b 3 - a 2 b 1 , a 2 b 3 - a 3 b 2 , a 3 b 1 - a 1 b 3
C. c → = a 1 b 3 - a 3 b 1 , a 2 b 2 - a 1 b 2 , a 3 b 2 - a 2 b 3
D. c → = a 3 b 1 - a 1 b 3 , a 1 b 2 - a 2 b 1 , a 2 b 3 - a 3 b 1
Cho b2=ac;c2=bd với b,c khác 0; b c khác d;b3 c3 khác d3. Chứng minh a3 b3−c3b3 c3−d3 =(a b−cb c−d )3
bài1 cho: a1/a2=a2/a3=a3/a4=...=a9/a1.
và a1+a2+a3+...a9 khác 0.
chứng minh:a1=a2=a3=...=a9
bài 2 cho a+b+c/a+b-c=a-b+c/a-b-c
chứng minh :c khác 0.
a1/2=a2/a3=a3/a4=....=a9/a1=a1+a2+a3+...+a9/a1+a2+a3+...+a9=1 =>a1=a2,a2=a3,...,a9=a1 =>a1=a2=a3=a4=...=a9
Cho a3+b3+c3=3abc với a,b,c khác 0 và a+b+c khác 0
tính A=\(\dfrac{\left(2016+\dfrac{a}{b}\right)+\left(2016+\dfrac{b}{c}\right)+\left(2016+\dfrac{c}{a}\right)}{2017^3}\)
giúp mình với
Có:
\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
Thay \(a=b=c\) vào \(A\), ta được:
\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)
\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)
\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)
\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)
\(=\dfrac{3}{2017^2}\)
Vậy: ...