CMR : nếu ba số nguyên tố a , a + n , a + 2n đều là các số nguyên tố lớn hơn 3 thì n chia hết cho 6
CMR : Nếu 3 số a , a + n . a + 2n đều là các số nguyên tố lớn hơn 3 thì n chia hết cho 6
SU DUNG NGUYEN LI DIRICHLET DE TIM CHIA HET CHO 3 VI TATCA LA SNT >3
NEN 3 SO KO CHIA HET CHO 3 NÊN CO DANG 3K+1 VÀ 3K+2
3 SỐ LÀ SNT>3 NEN 3 SO LA SÔ LE NÊN N LA CHAN NEN N:2
CMR: Nếu 3 số a; a+n; a+2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6
CMR: Nếu 3 số a, a+n, a+2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6
Chứng tỏ rằng nếu 3 số a, a + n, a + 2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6.
Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ
- Nếu n lẽ thì n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn
- Ta dặt n = 2k, k ∈ N *
+ Nếu k chia hết cho 3 thì n chia hết cho 6
+ Nếu k = 3p + 1 , p ∈ N * thì 3 số theo thứ tự bằng a, a + 6p + 2,
a + 12p + 4
+ Do a là số lẽ nên nếu a chia cho 3 dư 1 thì a + 6p + 2 chia hết cho 3,
Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3
+ Nếu k = 3p + 2 p ∈ N * thì 3 số theo thứ tự bằng
a, a + 6p +4, a + 12p +8
với a chia cho 3 dư 1 thì a + 12p +8 chia hết cho 3
với a chia cho 3 dư 2 thì a + 6p +4 chia hếtt cho 3
Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.
Cho a,n đều là số nguyên dương lớn hơn 1, CMR
Nếu an-1 là số nguyên tố thì a=2 và n là số nguyên tố
Nếu an+1 là số nguyên tố thì a chia hết cho2 và n là lũy thừa của 2
CMR:Nếu 3 số a,a+n,a+2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6
Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.
Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì
1.CMR nếu a và a+2 là 2 số nguyên tố lớn hơn 3 thì tông của chúng chia hết cho 12
2.
tìm số tự nhiên n cho 2n-1 và 2n+1 đều là các số nguyên tố
1)
Ta có: a+a+2=2a+2=2.(a+1)
Vì a là số nguyên tố lớn hơn 3
=>a là số lẻ
=>a+1 là số chẵn
=>a+1 chia hết cho 2
=>2.(a+1) chia hết cho 4
=>a+a+2 chia hết cho 4(1)
Lại có:
Vì a là số nguyên tố lớn hơn 3
=>a có 2 dạng 3k+1 và 3k+2
*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số
=>Vô lí
*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố
Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3
=>a+a+2 chia hết cho 3(2)
Từ (1) và (2) ta thấy:
a+a+2 chia hết cho 4 và 3
mà (4,3)=1
=>a+a+2 chia hết cho 4.3
=>a+a+2 chia hết cho 12
Vậy tổng của n và n+2 chia hết cho 12
chứng minh rằng : nếu a, a+n, a+2n là số nguyên tố lớn hơn 3 thì n chia hết cho 6
GIÚP MIK VS :>