Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng tỏ rằng nếu 3 số a, a + n, a + 2n đều là số nguyên tố lớn hơn 3 thì n chia hết cho 6.

Cao Minh Tâm
11 tháng 4 2017 lúc 12:30

Chỳ ý rằng , các số nguyên tố (trừ số 2) đều là các số lẽ

- Nếu n lẽ thì  n + a là số chẵn là một hợp số trỏi với giả thiết n + a là số nguyên tố. vậy n là số chẳn

-  Ta dặt n = 2k,  k   ∈   N *

+   Nếu  k chia hết cho 3 thì n chia hết cho 6

+   Nếu k = 3p + 1 ,  p   ∈   N *  thì 3 số theo thứ tự bằng a, a + 6p + 2,

a + 12p + 4

+  Do a là số lẽ nên nếu a chia cho 3 dư 1 thì  a + 6p + 2 chia hết cho 3,

 Nếu a chia 3 dư 2 thì a + 12p + 4 chia hết cho 3

+  Nếu k = 3p + 2   p   ∈   N *  thì 3 số theo thứ tự bằng

 

        a, a + 6p +4, a + 12p +8

với a chia cho 3 dư 1 thì  a + 12p +8  chia hết cho 3

với a chia cho 3 dư 2 thì  a + 6p +4  chia hếtt cho 3

Vậy để 3 số a, a + n, a + 2n đều là số nguyên tố thì n phải chia hếtt cho 6.


Các câu hỏi tương tự
Trần Đức Kiên
Xem chi tiết
phạm kiên
Xem chi tiết
Trần Văn Nguyên
Xem chi tiết
Nguyễn Kim Ngân
Xem chi tiết
Vân_ Anh
Xem chi tiết
Hồng Hà Thị
Xem chi tiết
nguyen hoang khang
Xem chi tiết
Trần Đức Kiên
Xem chi tiết
Nguyễn Văn Vi Duy Hưng
Xem chi tiết