Giải và biện luận bất phương trình
\(\sqrt{2x^2+3}\)<\(x-a\)
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\))(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x+2m-1}\) <= 0
Giải và biện luận bất phương trình sau m(2-x)+(m-1)^2 >2x+5
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
Giải và biện luận bất phương trình theo tham số m.
m x - m 2 > 2 x - 4
m x - m 2 > 2 x - 4 ⇔ (m - 2)x > (m - 2)(m + 2)
Nếu m > 2 thì m – 2 > 0, bất phương trình có nghiệm là x > m + 2;
Nếu m < 2 thì m – 2 < 0, bất phương trình có nghiệm là x < m + 2;
Nếu m = 2 thì bất phương trình trở thành 0x > 0, bất phương trình vô nghiệm.
Câu 1: Giải và biện luận bất phương trình \(m^2x+m\ge2-4x\)
Câu 2: Tìm giá trị thực của tham số m để bất phương trình \(m\left(2x-1\right)\ge2x-1\) có tập nghiệm là \([1;+\infty)\)
1.
\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)
Do \(m^2+4>0\) ; \(\forall m\)
\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)
2.
\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)
- Với \(m>1\Rightarrow m-1>0\)
\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)
- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)
Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)