Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bakuha Raito Ice
Xem chi tiết
bỏ mặc tất cả
7 tháng 4 2016 lúc 9:13

Xét tam giác ABD và BCD có chiều cao bằng nhau đáy AB = 1/2 CD => S_ABD = 1/2 S_BCD

Mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh A = 1/2 chiều cao đỉnh C

Xét tam giác ABG và BCG chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => S_ABG = 1/2 S_BCG

Vậy diện tích tam giac BCG là : 34,5 x 2 = 69 (cm2)

Diện tích ABCD là : (34,5 + 69) + (34,5 + 69) x 2 = 310,5 (cm2) 

Bakuha Raito Ice
7 tháng 4 2016 lúc 9:17

Kudo sai rồi 

Phương Trình Hai Ẩn
7 tháng 4 2016 lúc 14:25

Xét tam giác ABD và BCD có chiều cao bằng nhau đáy AB = 1/2 CD => S_ABD = 1/2 S_BCD

Mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh A = 1/2 chiều cao đỉnh C

Xét tam giác ABG và BCG chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => S_ABG = 1/2 S_BCG

Vậy diện tích tam giac BCG là : 34,5 x 2 = 69 (cm2)

Diện tích ABCD là : (34,5 + 69) + (34,5 + 69) x 2 = 310,5 (cm2) 

Nguyễn Tùng Dương
Xem chi tiết
shinichi kudo
Xem chi tiết
Nguyễn L ê Thảo Nguyên
10 tháng 4 2022 lúc 15:59

chịu thui

 

 

Chu Văn Ngọc 4a
27 tháng 2 2023 lúc 20:44

Ko biết làm lun

 

 

 

 

 

Dương Lê Khánh Huyền
1 tháng 5 lúc 20:19

Chịu rồiiiiii

nguyen thi ngoc linh
Xem chi tiết
lucy
Xem chi tiết
Xem chi tiết
HTBP
Xem chi tiết
Ng Bảo Ngọc
5 tháng 3 2023 lúc 15:44

Chia từng bài ra, vì nếu giải ra 2 bài này khá dài!

Ng Bảo Ngọc
5 tháng 3 2023 lúc 16:10

Bài 3:


SADC=SBDC( Vì có chung đáy DC; 2 chiều cao bằng nhau)

 SABD=SABC( Vì có chung đáy AB; 2 chiều cao= nhau)

SDAO=SBOC( Vì SADC-SDOC=SBDC-SDOC=> SAOD=SBOC)

Đáp số: SADC=SBDC; SABD=SABC;SAOD=SBOC

Bài 4:

Tổng của 2 đáy là:

3240x2:36=180(cm)

Đáy bé hình thang là:

180:(2+3)x2=72(cm)

Đáy lớn hình thang:

180-72=108(cm)

b) Nối D với B

SABD=3240:(2+3)x2=1296(cm2)

SEAB=1296:2=648( cm2)

Đáp số: a) Đáy bé: 72 cm

Đáy lớn 108 cm

b) 648 cm2

#YQ

 

 

 

Trịnh Hà Phương Linh
Xem chi tiết
HMinhTD
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 22:58

Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3

=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)

=>\(S_{AOD}=18\left(cm^2\right)\)

\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)