một tổ gồm 8 nam và 6 nữ. hỏi có bao nhiêu cách chọn 1 nhóm học sinh 5 bạn trong đó có đúng 2 nữ
một tổ gồm 8 nam và 6 nữ
hỏi có bao nhiêu cách chọn 1 nhóm 5 bạn có đúng 2 nữ
\(\Omega\)" chọn đc 1 nhóm 5 bạn"
\(\left|\Omega\right|=C^5_{14}\)
A"chọn đc nhóm 5 bạn có đúng 2 bạn nữ"
\(\left|A\right|=C^2_6.C^3_8\)
Suy ra
\(P\left(A\right)=\frac{C^2_6.C^3_8}{C^5_{14}}\)
1.Một nhóm học sinh 6 nam và 9 nữ
a, Có bao nhiêu cách chọn 3 học sinh nam bất kì
b, có bao nhiêu cách chia 3 tổ mỗi tổ gồm 2 nam và 3 nữ
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ
Một nhóm có 6 học sinh nữ và 7 học sinh nam. Có bao nhiêu cách chọn ra một tổ học tập có 5 học sinh, trong đó có một tổ trưởng, một tổ phó, một thủ quỹ và hai tổ viên, biết rằng tổ trưởng phải là nam và thủ quỹ phải là nữ.
A. 20790
B. 30000
C. 30450
D. 24000
Ta thực hiện các công đoạn sau:
Bước 1: Chọn 1 nam trong 7 nam làm tổ trưởng, có cách.
Bước 2: Chọn 1 nữ trong 6 nữ làm thủ quỹ, có cách.
Bước 3: Chọn 1 tổ phó trong 11 bạn còn lại (bỏ 2 bạn đã chọn ở bước 1 và bước 2), có cách.
Bước 4: Chọn 2 tổ viên trong 10 bạn còn lại (loại 3 bạn đã chọn ở trên), có cách.
Theo quy tắc nhân có cách chọn một tổ thỏa yêu cầu.
Chọn A
Bài 1:
Lớp 6A có 18 bạn nam và 24 bạn nữ. Trong một buổi sinh hoạt lớp, bạn lớp trưởng dự kiến chia các ban thành từng nhóm sao cho số bạn nam trong mỗi nhóm đều bằng nhau và số bạn nữ cũng vậy. Hỏi lớp có thể chia được nhiều nhất bao nhiêu nhóm? khi đó mỗi nhóm có bao nhiêu bạn nam, bao nhiêu bạn nữ?
Bài 2
Một lớp học có 28 nam và 28 nữ. Có bao nhiêu cách chia đều học sinh thành các tổ với số tổ nhiều hơn 1 sao cho số nam trog các tổ bằng nhau và số nữ cũng vậy? CÁch chia nào để mỗi tổ có số học sinh ít nhất?
Bài 1:
Gọi số nhóm chia được là a (a thuộc N*)
Theo bài ra ta có:
18 chia hết cho a ; 24 chia hết cho a
=> a thuộc ƯC(18,24)
Ta có :
18= (1;2;3;6;9;18) ( ngoặc ( ở đây là ngoặc nhọn)
24 = (1;2;3;4;6;8;12;24)
=> ƯC(18,24) = ( 1;2;3;6)
Vậy có thể chia nhiều nhất thành 6 nhóm.
Khi đó, mỗi nhóm có:
Số bạn nam là:
18 : 6 = 3 (bạn)
Số bạn nữ là:
24 : 6 = 4 (bạn)
Bài 2:
Gỉai
Gọi a là số tổ dự định chia (a thuộcN)và a ít nhất
Theo bài ra ta có:
28 chia hết cho a;24 chia hết cho a
Do đó a là ƯC (28;24)
28=2mũ2.7
24=2mũ3.3
ƯCLN(28:24)=2mũ2=4
Suy ra ƯC(24:28)=Ư(4)=(1:2:4)
Vậy có 3 cách chia số nam và nữ vào các tổ đều nhau.
Chia cho lớp thành 4 tổ thì mỗi tổ có số học sinh ít nhất
Gọi số nhóm chia được là x
18:x 24:x => x thuộc UCLN {18;24}
UCLN {18;24}= 2 * 3 =6
=> Lớp có thể chia nhiều nhất được 6 nhóm
Khi đó mỗi nhóm có số bạn nam là 18 : 6 =3 (ban)
Khi đó mỗi nhóm có số bạn nữ là 24 : 6 =4 (ban)
Đáp số : lớp có thể chia nhiều nhất được 6 nhóm
khi đó mỗi nhóm có 3 bạn nam
khi đó mỗi nhóm có 4 bạn nữ
Từ một nhóm có 10 học sinh nam và 8 học sinh nữ, có bao nhiêu cách chọn ra 5 học sinh trong đó có 3 học sinh nam và 2 học sinh nữ?
Từ một nhóm có 10 học sinh nam và 8 học sinh nữ, có bao nhiêu cách chọn ra 5 học sinh trong đó có 3 học sinh nam và 2 học sinh nữ?
A. C 10 3 . C 8 2
B. A 10 3 . A 6 2
C. A 10 3 + A 8 2
D. C 10 3 + C 8 2
Chọn A.
Phương pháp
- Đếm số cách chọn 3 trong 10 bạn nam và 2 trong 8 bạn nữ.
- Sử dụng quy tắc nhân đếm số cách chọn.
Cách giải:
Một đoàn đại biểu gồm 4 học sinh được chọn từ một tổ gồm 5 nam và 4 nữ. Hỏi có bao nhiêu cách chọn sao cho trong đó có ít nhất một nam và ít nhất một nữ ?
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam ?
A. C 9 2 . C 6 3
B. C 9 2 + C 6 3
C. C 6 2 . C 9 3
D. A 6 2 . A 9 3
Đáp án C.
Phương pháp:
+) Chọn 2 học sinh nam.
+) Chọn 3 học sinh nữ.
+) Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn 2 học sinh nam C 6 2
Số cách chọn 3 học sinh nữ C 9 3
Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là C 6 2 . C 9 3 .
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam ?
A. C 9 2 C 6 3
B. C 6 2 + C 9 3
C. C 6 2 . C 9 3
D. A 6 2 . A 9 3
Đáp án C.
Phương pháp:
+) Chọn 2 học sinh nam.
+) Chọn 3 học sinh nữ.
+) Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn 2 học sinh nam C 6 2
Số cách chọn 3 học sinh nữ C 9 3
Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là C 6 2 . C 9 3