Tìm X biết: \(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}+\frac{x+3}{2009}\)
tìm x :
\(\frac{x +3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\) \(\left(x+3\right).\left(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow\) \(x+3=0\) ( Vì \(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\) )
\(\Leftrightarrow\) \(x=-3\)
Vậy x = -3
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Rightarrow\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Rightarrow\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
\(\Rightarrow x+3=0\Leftrightarrow x=-3\)
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Rightarrow\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Rightarrow\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\end{cases}\hept{\begin{cases}x=-3\\\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\end{cases}}}\)
\(\Rightarrow x=-3\)
Tìm x biết :
\(\frac{x+3}{2007}\)- \(\frac{x+3}{2008}\)= \(\frac{x+3}{2010}\)- \(\frac{x+3}{2009}\)
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\)
Nên \(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt ~
Tìm x : \(\frac{x+4}{2007}+\frac{x+3}{2008}=\frac{x+2}{2009}+\frac{x+1}{2010}\)
\(\left(\frac{x+4}{2007}+1\right)+\left(\frac{x+3}{2008}+1\right)=\left(\frac{x+2}{2009}+1\right)+\left(\frac{x+1}{2010}+1\right)\)
\(\left(\frac{x+2011}{2007}\right)+\left(\frac{x+2011}{2008}\right)=\left(\frac{x+2011}{2009}\right)+\left(\frac{x+2011}{2010}\right)\)
\(\frac{x+2011}{2007}+\frac{x+2011}{2008}-\frac{x+2011}{2009}-\frac{x+2011}{2010}=0\)
\(\left(x+2011\right).\left(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\)khác 0 (các số hạng ko bằng nhau)
\(\Leftrightarrow\)\(x+2011=0\)
\(\Rightarrow x=0-2011\)
\(\Rightarrow x=-2011\)
\(\frac{x+5}{2005}+\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}+\frac{x}{2010}\)
Tìm số hữu tỉ x,biết : \frac{x+6}{2010}+\frac{x+5}{2009}=\frac{x+4}{2008}+\frac{x+4}{2007}
tìm x,biết:\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+3}{2007}+\frac{x+4}{2006}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
tìm x biết:\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=\frac{2009}{1}+\frac{2010}{2}+\frac{2011}{3}+...+\frac{4016}{2008}-2008\)
Giải phương trình: \(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)