bài 1: CMR a,b,c>= 0 thì a3+b3+c3>=3abc
cac bạn oi giup minh khó wa đi a. minh dang can gap lam
bài 1: CMR a,b,c>= 0 thì a3+b3+c3>=3abc
cac bạn oi giup minh khó wa đi a. minh dang can gap lam
bài 1 CMR
Nếu a+b+c=0 thì (a2+b2+c2)2=2(a4+b4+c4)
cac ban oi ai lam dc bai nay k kho wa. minh dang can gap. minh se like cho nhieu ma. giup minh đi
a+b+c=0<=>a^2+b^2+c^2+2ab+2bc+2ca=0
<=>a^2+b^2+b^c=-2ab-2bc-2ca
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2+8abc(a+b+c)
<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2(vì a+b+c=0)(1)
(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2
<=>a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2
<=>2(a^4+b^4+c^4)=4a^2b^2+4b^2c^2+4c^2a^2(2)
Từ (1) và (2)=>Đccm
bai 1 cho a,b,c>0
CMR: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}>=1\)
cac ban oi giup minh. minh dang can gap lam. . lam on giup minh di. hu hu
bài 1 cho a,b,c>0. CMR \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>=\frac{3}{2}\)
cac ban oi giup minh di. toi minh di hoc roi. minh dang can gap lam
Các bạn giúp mình bài này với
Chứng minh: nếu a + b + c = 0 thì a3 + b3 + c3 - 3abc = 0
a^3 + b^3 + c^3 - 3abc
=(a^3+3a^2b+3ab^2+b^3)+c^3-(3a^2b+3ab^2+3abc)
=(a+b)^3+c^3-3ab(a+b+c)
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2+2ab-3ab-bc-ac)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
Thay a + b + c = 0, ta có:
0(a^2+b^2+c^2-ab-bc-ac)
=0
Vậy nếu a + b + c = 0 thì a^3 + b^3 + c^3 - 3abc = 0
Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)
bài 1 cho a,b,c>0: CMR
a, \(\frac{1}{a}+\frac{1}{b}>\frac{4}{a+b}\)
b, \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(a+b+c\right)>=9\)
cac ban giup minh di minh k hieu bai nay lam kieu j. minh dang can. cac ban oi lam on giup minh
cho a,b,c >0, a+b=1 CMR
a, \(\frac{1}{ab}+\frac{1}{a^2+b^2}>=6\)
cac ban oi giup minh di. minh dang can gap
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{2}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(\sqrt{2}+1\right)^2}{2ab+a^2+b^2}=\frac{3+2\sqrt{2}}{\left(a+b\right)^2}=3+2\sqrt{2}\)
Xem lại đề.
bài 1: CMR a,b,c>= 0 thì a3+b3+c3>=3abc
bài 2 CMR
Nếu a+b+c=0 thì (a2+b2+c2)2=2(a4+b4+c4)
cac ban oi giup minh di 2 bai nay kho wa minh lam k mai k ra. mong cac ban giup minh
Bài 1:
a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc
b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0
a: Ta có: \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
b: Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a+b+c=0\)
a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)
b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)
Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))