phân tích nhân tử
xy-6y+2x-12
2x(y-z)+(z-y)(x+y)
a) Phân tích nhân tử
i ) x y - 6 y + 2 x - 12 i i ) 2 x ( y - z ) + ( z - y ) ( x + y ) b ) T ì m x b i ế t : x + 3 = x + 3 2
i) xy - 6y + 2x - 12
= (xy - 6y) + (2x - 12)
= y(x - 6) + 2(x - 6)
= (x - 6)(y + 2)
ii) 2x(y - z) + (z - y)(x + y)
= 2x(y - z) - (y - z)(x + y)
= (y - z)(2x - x - y)
= (y - z)(x - y)
b) x + 3 = (x + 3)2 ⇔ (x + 3)2 - (x + 3) = 0 ⇔ (x + 3)(x + 3 - 1) = 0
⇔ (x + 3)(x + 2) = 0
Vậy x = -3; x = -2
phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm nhiều hạng tử.
a,x^ - x -y^2 -y
b, 9x + y^2 -16z^2 + 6xy
c, a^3 - a^2x - ay + xy
d, 2x^2 - 8y^2 + 3x + 6y
e, xy. ( x + y) + yz .( y + z )+ xz . (x+ z) + 2xyz
x2 - x - y2 - y
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
***
9x2 + y2 - 16z2 + 6xy
= (3x + y)2 - (4z)2
= (3x + y - 4z)(3x + y + 4z)
***
a3 - a2x - ay + xy
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
***
2x2 - 8y2 + 3x + 6y
= 2(x2 - 4y2) + 3(x + 2y)
= 2(x - 2y)(x + 2y) + 3(x + 2y)
= (x + 2y)(2x - 4y + 3)
***
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + z)
= y(x + y + z)(x + z) + xz(x + z)
= (x + z)(xy + y2 + yz + xz)
= (x + z)[y(x + y) + z(x + y)]
= (x + z)(x + y)(y + z)
phân tích đa thức thành nhân tử
a) 2x(y-z)-6y(z-y)
b)x^2+4x-4y-y^2
a) 2x(y-z)-6y(z-y)
=2x(y-z)+6y(y-z)
=2(y-z)(x+3y)
b)x^2+4x-4y-y^2
=x^2-y^2+4x-4y
=(x-y)(x+y)+4(x-y)
=(x-y)(x+y+4)
P/s tham khảo nha
a) = 2x(y-z)-6y(y-z)
= 2(y-z)(x-3y)
b) =
Phân tích đa thức thành nhân tử:
xy(x-y)-xz(x+z)-yz(2x-y+z)
PHÂN TÍCH THÀNH NHÂN TỬ
X^2-X-Y^2-Y
X^2-2XY+Y^2-Z^2
5X-5Y+ax-ay
a^3-a^2x-ay+xy
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)
\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)
\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)
\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Phân tích đa thức thành nhân tử
A ) xy(z+y)+yz(y+z)+zx(z+x)
B )xy(x+y)-yz(y+z)-zx(z-x)
A ) xy(z+y)+yz(y+z)+zx(z+x)
=y.[x(z+y)+z(y+z)]+zx(z+x)
=y.(xz+xy+zy+z2)+zx(z+x)
=y.(xz+z2+xy+zy)+zx(z+x)
=y.[z.(z+x)+y.(z+x)]+zx(z+x)
=y.(z+x)(z+y)+zx(z+x)
=(z+x)[y(z+y)+zx]
=(z+x)(yz+y2+zx)
B )xy(x+y)-yz(y+z)-zx(z-x)
=y.[x(x+y)-z(y+z)]-zx(z-x)
=y.(x2+xy-zy-z2)-zx(z-x)
=y.(x2-z2+xy-zy)-zx(z-x)
=y.[(x+z)(x-z)+y.(x-z)]-zx(z-x)
=y.(x-z)(x+z+y)+zx(x-z)
=(x-z)[y(x+z+y)+zx]
=(x-z)(yx+yz+y2+zx)
=(x-z)(yx+zx+yz+y2)
=(x-z)[x.(y+z)+y.(y+z)]
=(x-z)(y+z)(x+y)
b. \(\text{ xy(x+y)-yz(y+z)-xz(z-x) =xy(x+y+z-z)+yz(y+z)+xz(x-z) =xy(x-z)+xy(y+z)+yz(y+z)+xz(x-z) =(x+y)(y+z)(x-z) }\)
Phân tich xy ( x- y ) - xz (x+ z) + yz(2x-y+z) thanh nhân tử
\(xy\left(x-y\right)-xz\left(x+z\right)+yz\left(2x-y+z\right)\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y+x+z\right)\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y\right)+yz\left(x+z\right)\)
\(=\left(x-y\right)\left(xy+yz\right)-\left(xz-yz\right)\left(x+z\right)\)
\(=y\left(x-y\right)\left(x+z\right)-z\left(x-y\right)\left(x+z\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+z\right)\)
Ta có :
xy(x−y)−xz(x+z)+yz(2x−y+z)
=xy(x−y)−xz(x+z)+yz(x−y+x+z)
=xy(x−y)−xz(x+z)+yz(x−y)+yz(x+z)
=(x−y)(xy+yz)−(xz−yz)(x+z)
=y(x−y)(x+z)−z(x−y)(x+z)
=(y−z)(x−y)(x+z)
P/s tham khảo nha
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= x 2 y + x y 2 + yz(y + z) + x 2 z + x z 2 + xyz + xyz
= ( x 2 y + x 2 z) + yz(y + z) + (x y 2 + xyz) + (x z 2 + xyz)
= x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x 2 + yz + xy + xz) = (y + z)[( x 2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
Phân tích đa thức thành nhân tử x^3-3x^2y+3xy^2-y^3-z^z^3
x^2-y^2+8x+6y+7
x³ - 3x²y + 3xy² - y³ - z³
= (x³ - 3x²y + 3xy² - y³) - z³
= (x - y)³ - z³
= (x - y - z)[(x - y)² + (x - y)z + z²]
= (x - y - z)(x² - 2xy + y² + xz - yz + z³)
--------------------
x² - y² + 8x + 6y + 7
= (x² + 8x + 16) - (y² - 6y + 9)
= (x + 4)² - (y - 3)²
= (x + 4 - y + 3)(x + 4 + y - 3)
= (x - y + 7)(x + y + 1)
a: \(=\left(x^3-3x^2y+3xy^2-y^3\right)-z^3\)
\(=\left(x-y\right)^3-z^3\)
\(=\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x-y\right)+z^2\right]\)
\(=\left(x-y-z\right)\left(x^2-2xy+y^2+xz-yz+z^2\right)\)
b: \(=x^2+8x+16-y^2+6y-9\)
=(x+4)^2-(y-3)^2
=(x+4+y-3)(x+4-y+3)
=(x+y+1)(x-y+7)