Câu 1 : CMR (n-1)! chia hết n thì n là SNT
Câu2: CMR 100! không chia hết 2^100
Câu 3: CMR 1300! chia hết 169^53
CMR với mọi n thuộc N thì
a,9^n+1 không chia hết cho 100
b, n^2+n+1 không chia hết cho 15
a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)
=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)
b, Gỉa sử n chia hết cho 3
=> n2+n+1 chia 3 dư 1.
Nếu n chia 3 dư 1
=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3
Nếu n chia 3 dư 2
=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.
Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5
=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9
=> n2 + n+1 ko chia hết cho 15.
thấy sai thì góp ý nha
Câu 1: CMR: Nếu 3 số n, n+k, n+2k là 3 số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Câu 2: Cho p và 8p+1 là 2 số nguyên tố (p>3). CMR: 4p+1 chia hết cho 3.
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
Bài 1 :CMR với mọi n thuộc N , thì 60n + 75 chia hết cho 15 nhưng không chia hết cho 30
Bài 2 : Cho A = 1+4+4^2+.....+4^2011
Bài 3 ; Cho ( a-b ) chia hết cho 7 , CMR ( 4a - 3b ) chia hết cho 7
Cho ( 4a + 3b ) chia hết cho 7 , CMR ab gạch đầu chia hết cho 3
Cmr với mọi số nguyên n thì
a)n^2+3n+4 không chia hết cho 49
b)n^2+5n+16 không chia hết cho 169
Giúp vớiiiiii!
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
Cho P=(n+1)(n+2)(n+3)...(2n-1)(2n) với n là số tự nhiên
a,CMR P chia hết cho 2n
b,CMR P không chia hết cho 22n+1
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B