Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trúc Phương
Xem chi tiết
Nguyễn Vũ Phương Thảo
16 tháng 11 2021 lúc 14:20

4333344

Khách vãng lai đã xóa
Vũ Tuấn Khôi Nguyên
21 tháng 1 2022 lúc 12:19

?reeeeeeeeeeee

Khách vãng lai đã xóa
Võ Đường Ngọc Hòa TV
10 tháng 3 2022 lúc 17:26

Ủa, cái số gì đây??????

Khách vãng lai đã xóa
Nguyễn Thị Kim Dung
Xem chi tiết
Fan Song Joong Ki
Xem chi tiết
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 10:01

a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)

\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)

\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)

\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)

\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)

\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)

Đặng Linh Chi
Xem chi tiết
Đỗ Văn Hoài Tuân
27 tháng 5 2015 lúc 19:46

a) A =  1 - 2 + 3 - 4 + .....+ 2013 - 2014 + 2015

=  (1 - 2) + (3 - 4) + .....+ (2013 - 2014) + 2015

=(-1) + (-1) + ...+ (-1) + 2015

      1007 số  -1

=(-1) . 1007 +2015   

= -1007 + 2015

=1008

b)  1 . 2 + 2 . 3 + 3 . 4 +....99 . 100

đặt S= 1 . 2 + 2 . 3 + 3 . 4 +....99 . 100

 => 3S = 1.2.3 +2.3.(4-1) +...+99.100.(101-98)

 = 1.2.3 +2.3.4-1.2.3+...+99.100.101-98.99.100

= 99.100.101

= 999900

=> S= 333300

Vậy 1 . 2 + 2 . 3 + 3 . 4 +....99 . 100 = 333300

thien ty tfboys
27 tháng 5 2015 lúc 19:37

a,A=(1-2)+(3-4)....(2013-2014)+2015

A= -1 + -1.....-1+2015

A= (2015-1):1+1

A=2015 

A=(2015 x -1) x -1

A=2015

A=2015 + 2015 

A=4030

b, 1/1.2 +1/2.3 ...1/99.100

1/1-1/2+1/2-1/3 ....1/99-1/100

1/1-1/100

99/100

Phùng Thị Minh Nguyệt
Xem chi tiết
lê đình nhân
Xem chi tiết
Nguyễn Thị Thu Huyền
9 tháng 6 2017 lúc 8:54

khó nhìn lắm bn ak

sao pn ko cho 

\(\frac{11}{125}-\frac{17}{18}-\frac{5}{8}+\frac{4}{9}+\frac{17}{14}.\)

thì có phải dễ nhìn hơn ko

ST
9 tháng 6 2017 lúc 15:03

a, \(A=\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)

\(=\frac{11}{125}+\left(\frac{-17}{18}+\frac{4}{9}\right)+\left(\frac{-5}{7}+\frac{17}{14}\right)\)

\(=\frac{11}{125}+\frac{-1}{2}+\frac{1}{2}\)

\(=\frac{11}{125}\)

b, \(B=1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)

\(=\left(1+2+3+4-3-2-1\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)\)

\(=4-3=1\)

c, \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-49}{50}\)

Nguyễnn Vũtháibìnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 13:42

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Nguyễnn Vũtháibìnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 13:42

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)