Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Ngọc
Xem chi tiết

Sai đề

Vd : n = 8 không chia hết cho 10

A = ( n2 + 1 ) ( n2 - 1 ) = ( 82 + 1 ) ( 82 - 1 ) = 65 * 63 = 4095 không chia hết cho 30

Khách vãng lai đã xóa
Lê Hoàng Anh Thư
Xem chi tiết
Đinh Quốc Tuấn
20 tháng 12 2018 lúc 21:02

n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2  chia hết cho 9

   Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3

                              \(\Rightarrow\)A không chia hết cho 9(đpcm)

Thang Nguyen
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
nguyễn khánh ly
Xem chi tiết
nguyễn khánh ly
6 tháng 1 2021 lúc 20:02

mong mọi người giúp

Thịnh Gia Vân
6 tháng 1 2021 lúc 20:08

Ủa cái này có gì đâu:vv

Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)

Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)

-> Đpcm

 

 

Vương Ngọc Uyển
Xem chi tiết
Ben 10
13 tháng 9 2017 lúc 16:47

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

Nguyễn Thu Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:07

a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)

\(=18n⋮2\)

nguyenthithanhhoai
Xem chi tiết
NY nơi đâu ( ɻɛɑm ʙáo cá...
10 tháng 11 2019 lúc 9:50

(16n+8)(3n-2)=(8.2n+8.1)(3n-2)=8(2n+1)

ta có 6=2.3

vì n(n+1)(n+2) là ba số nguyên liên tiếp nên

n(n+1)(n+2) chia hết cho 2 và 3 nên n(n+1)(n+2) chia hết cho 6

Khách vãng lai đã xóa

Ta có : \(\left(16n+8\right)\left(3n-2\right)\)

Xét \(16n+8=8.2n+8=8.2\left(n+1\right)⋮8\)

\(\Rightarrow16n+8⋮8\Leftrightarrow\left(16n+8\right)\left(3n-2\right)⋮8\Rightarrowđpcm\)

Ta có : \(n\left(n+1\right)\left(n+2\right)\)  là 3 số TN liên tiếp 

Ta có tổng của 3 số TN liên tiếp chia hết cho 3 và 2

Ta có tích của 3 số TN liên tiếp chia hết cho 3 và 2.

Khách vãng lai đã xóa
Phùng Anh Tuấn
Xem chi tiết