Cho các phân thức:P=\(x+\frac{1}{x}\) Q=x-\(\frac{1}{x}\)
Tính P+Q; P-Q; PxQ; P:Q
Tính giá trị của biểu thức:P=\(\frac{x}{x\times y+x+1}+\frac{y}{y\times z+y+1}+\frac{z}{x\times z+z+1}\)Biết \(x\times y\times z=1\)
\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz+z+1}{xz+z+1}=1\)
Cho x+y+z=1
\(x^2+y^2+z^2=1\) và \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Hãy tính giá trị của biểu thức:P=ab+bc+ca
cho biểu thức:P=\(\left(1-\frac{4}{x+1}-\frac{1}{x^2-1}\right):\frac{x^2-2x}{x^2-1}\)
1)rút gọn P 2)tìm x để P=\(\frac{1}{2}\)
Cho biểu thức:P=\(\left(\frac{x^4+x^2-4x+1}{x^2-1}-\frac{x-1}{x+1}+\frac{x+1}{x-1}\right).\frac{x\left(x+1\right)-\left(1+x\right)}{x^3-1}\)
a) Rút gọn P.
b) Tìm giá trị nguyên của x để P nhận giá trị nguyên.
Giải giúp tớ phần b vs
Cho biểu thức:P=\(\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
(Với x lớn hơn hoặc bằng 0;x #1)
a) Rút gọn P
b)Tìm x để P<\(\frac{1}{2}\)
c)Tìm giá trị của x để P=\(\frac{1}{3}\)
d)Tìm x để P nguyên
e)Tìm giá trị nhỏ nhất của P
1. Cho 2 đa thức:P(x)=3x3+x2-3x-1; Q(x)=-3x3-x2-x-15. Tìm x để P(x)=-Q(x)
2. Cho các số a,b,c đều khác 0 và thỏa mãn b2=ac. Chứng minh rằng: \(\frac{a}{b}=\frac{\left(a+2013b\right)^2}{\left(b+2013c\right)^2}\)
Để P(x)=Q(x) thì:\(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)
Nếu \(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)
=>\(\left(3x^3+x^2-3x-1\right)-\left(-3x^3-x^2-x-15\right)=0\)
=>\(3x^3+x^2-3x-1+3x^3+x^2+x+15=0\)
=>\(\left(3x^3+3x^3\right)+\left(x^2+x^2\right)+\left(-3x+x\right)+\left(-1+15\right)=0\)
=>\(6x^3+2x^2-2x+14=0\)
=>\(6x^3+2x^2-2x=-14\)
Cho hai đa thức:P(x)=-5x3-\(\frac{1}{3}\)+8x4+x2
Q(x)=x2-5x-2x3+x4-\(\frac{2}{3}\)
Hãy tính P(x)+Q(x) va P(x)-Q(x)
Cho biểu thức:P=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\) với x>0;x≠1
a)Rút gọn P
b)Tính giá trị của P khi x=7-4\(\sqrt{3}\)
c)Tìm x để P có GTLN
a, \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\frac{1}{\sqrt{x}+1}.\left(\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{1}{\sqrt{x}+1}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(1-x\right)^2}{2}\)
\(=\frac{1}{\sqrt{x}+1}.\frac{-2\sqrt{x}}{x-1}.\frac{\left(1-x\right)^2}{2}=-x+\sqrt{x}\)
b, \(x=7-4\sqrt{3}=\left(\sqrt{3}-2\right)^2\Rightarrow\sqrt{x}=2-\sqrt{3}\)
Khi đó \(P=-x+\sqrt{x}=-\left(7-4\sqrt{3}\right)+\left(2-\sqrt{3}\right)=-5+3\sqrt{3}\)
c, \(P=-x+\sqrt{x}=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow MaxP=\frac{1}{4}\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
phân tích, tính
A=(1-\(\frac{1}{2016}\))x(1-\(\frac{2}{2016}\))x....x(1-\(\frac{2017}{2016}\))
Các bạn giúp mình nha! Nhanh giùm mình nghen....mình tik cho:))
Bạn chú ý trong tích A có chứa thừa số \(1-\frac{2016}{2016}=1-1=0\)
Vì tích có 1 thừa số bằng 0 nên cả tích sẽ bằng 0
Vậy A=0
Bạn ghi rõ ra đc ko?
(ví dụ: 2x3+5=6+5=11)