Cho A=7+7^2+7^3+......+7^8
Chung minh A chia het cho 5
Chứng minh rằng
a,5^5 - 5^4 + 5^3 chia het cho 7
7^6 : 7^5 - 7^4 chia het cho 11
10^6 - 5^7 chia het cho 59
10^9 + 10^8 10^7 chia het 22
3 + 2 +3 + 2 chia het cho 10 n thuoc n*
chung minh rang
a.55-54+53 chia het cho 7
b.76+75-74 chia het cho 11
c.2a2+4a+5 chia het cho a+2
d.A=7+72+73+74+.....+74n chia het cho 400
e,3n+3 - 3n+1 + 2n+3 + 2n+2 chia hat cho 6
chung minh rang
a,A=75(4^1999+4^1988+.......+4^2+4+1)+25 chia het cho 222
b,2a^2+4a+5 chia het cho a+2
c,4a^3+14a^2+6a+12 chia hat cho 2a+1
d,B=(-7)+(-7)2+......+(-7)2006 + (-7)2007 chia het cho 43
e,E=7+72+73+.......+74n chia het cho 400
Chung minh: a, a(a-1)-(a+3)(a+2) chia het cho 6
b, a(a+2)-(a-7)(a-5) chia het cho 7
a, Ta có a(a-1)-(a+3)(a+2)
= a2-a-a2-5a-6
= -6a-6
= -6(a+1) chia hết cho 6 (đpcm)
b,Ta có a(a+2)-(a-7)(a-5)
= a2+2a-a2+12a+35
= 14a+35
= 7(a+5) chia hết cho 7 (đpcm0
chung minh rang :
a. 7^6+7^5-7^4 chia het cho 55.
b. 3 mu n cong 2 + 3 mu n cong 1tru3 mu n,chia het cho 11
chung minh rang :
a. 7^6+7^5-7^4 chia het cho 55.
b. 3 mu n cong 2 + 3 mu n cong 1tru3 mu n,chia het cho 11
Bài 1:
a) C/m: A=2^1+2^2+2^3+2^4+....+2^2010 chia het cho 3 và 7
b) C/m: B=3^1+3^2+3^3+3^4+....+3^2010 chia het cho 4 va 13
c) C/m: C= 5^1+5^2+5^3+5^4+....+5^2010 chia het cho 6 va 31
d) C/m: D=7^1+7^2+7^3+7^4+....+7^2010 chia het cho 8 va 57
a)chung minh A= 2^1+2^2+2^3+2^4+...2^2010chia het cho 3
b)chung minh B= 3^1+3^2+3^3+3^4+...3^2010chia het cho 4
c)chung minh C= 5^1+5^2+5^3+5^4+...5^2010chia het cho 6
d)chung minh D= 7^1+7^2+7^3+7^4+...7^2010chia het cho 8
a) A=21+22+23+...+22010
A=(21+22)+(23+24)+.....+(22009+22010)
A=(21x3)+(23x3)+.....+(22009x3)
A=3x(21+23+.......+22009)
Vậy A chia hết cho 3.
NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !
chung minh A= 2 + 2^2 +2^3 +2^4 +.........+2^60 chia het cho 7
tim so tu nhien n de : n+4 chia het cho n+1
chung minh ( 1+2 +2^2 +2^3+2^4+2^5+2^6+2^7) chia het cho 3
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...