a.Với bốn chữ số 1 , 2, 3 , 4 ; hãy viết tất cả các số có đủ bốn chữ số khác nhau ấy.
b.Tính tổng của tất cả các số ở câu a.
c.Với bốn chữ số 6 , 7 , 8 , 9; có thể viết được bao nhiêu số có đủ bốn chữ số khác nhau ấy?
với bốn số 1, 2, 3, 4 hãy viết các số có bốn chữ số, mỗi chữ số có cả bốn chữ số đó và có chữ số hàng nghìn là 4
- 4321, 4312, 4213,4231,4132,4123 có 6 số nha bạn!
4321
4312
4213
4231
4123
4132
Chúc e học tốt!
4321,4231,4213,4123,4132,4332,4323,4223.8 số nha bạn!
a.với n là số tự nhiên chẵn,chứng minh:(20^n+16^n-3^n-1)chia hết cho 3
b.tìm số x có chữ số tận cùng bằng 2,biết rằng x,2x,3x đều là các số có 3chữ số vào 9 chữ số của 3 chữ số đó đều khác nhau vào khác 0
Với các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm:
a) Bốn chữ số b) Bốn chữ số khác nhau
c) Bốn chữ số khác nhau lẻ d) 4 chữ số chẵn khác nhau
e) 5 chữ số chẵn f) 3 chữ số khác nhau chia hết cho 5
b, Số có 4 chữ số có dạng \(\overline{abcd}\).
a có 7 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.
a, Có thể lập được \(\dfrac{7777-1000}{1}+1=6778\) số thỏa mãn.
c, Số có 4 chữ số có dạng \(\overline{abcd}\).
d có 4 cách chọn.
a có 6 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) Lập được \(6.6.5.4=720\) số thỏa mãn.
Cho bốn chữ số : 1 ; 2 ; 3 ; 4 .
Hãy viết tất cả các số tự nhiên khác nhau có bốn chữ số mà mỗi số đều có bốn chữ số trên
1234 , 1243 , 1342 , 1324 , 1432 , 1423
2341 , 2314 , 2413 , 2431 , 2134 , 2143
3124 , 3142 , 3241 , 3214 , 3412 , 3421
4321 , 4312 , 4231 , 4213 , 4132 , 4123
chuc ban hoc tot
Từ bốn chữ số 1; 2; 3; 4, ta viết được tất cả các số tự nhiên có bốn chữ số mà mỗi số đều có bốn chữ số trên là:
1234; 1243; 1324; 1342; 1423; 1432
2134; 2143; 2314; 2341; 2413; 2431
3124; 3142; 3214; 3241; 3412; 3421
4123; 4132; 4213; 4231; 4312; 4321
Chúc bạn học tốt
Các số đó là :
1234 | 1243 | 1324 | 1342 | 1423 | 1432 |
2134 | 2143 | 2314 | 2341 | 2431 | 2413 |
3124 | 3142 | 3214 | 3241 | 3421 | 3412 |
4123 | 4132 | 4213 | 4231 | 4321 | 4312 |
Với năm chữ số 0 ; 1 ; 2 ; 3 ; 4 viết được :
a) Các số tròn chục có bốn chữ số, mỗi số có bốn chữ số khác nhau và chia hết cho 3 là :
b) Các số có bốn chữ số, mỗi số có bốn chữ số khác nhau và chia hết cho các số 2 ; 5 ; 9 là :
a,4320,1230,2340,3420,3210,1320,2130,2310.
b,4320,2340,4230,2340,2430,3420,3240
tick nha
cho 3 số 1;2;3
a.với 3 số 1;2;3 có thể viết bao nhiêu số thập phân có 2 chữ số ở phần thập phân
b.tính tổng các số vừa tìm được(bằng cách thuận tiện nhất)
a)Các số viết được có dạng a,bc
-Có 3 cách chọn a (1,2,3)
-Có 3 cách chọn b (1,2,3)
-Có 3 cách chọn c (1,2,3)
=>Có số số là:
3.3.3=27(số)
Vậy có thể viết được 27 số thập phân có 2 chữ số ở phần thập phân.
b) Tổng các số vừa tìm được là:
a,bc+a,bc+…+a,bc
=a+0,b+0,0c+a+0,b+0,0c+…+a+0,b+0,0c
=(a+a+…+a)+(0,b+0,b+…+0,b)+(0,0c+0,c+…+0,0c)
=(a+a+…+a)+(b+b+…+b):10+(c+c+…+c):100
Vì có 27 số a,b,c
Mà mỗi số 1,2,3 được dùng như nhau để viết nên dãy trên
=>Có 9 số a,b,c=1, 9 số a,b,c=2, 9 số a,b,c=3
=>a+a+…+a=b+b+…+b=c+c+…+c=1+1+…+1+2+2+…+2+3+3+…+3
=1.9+2.9+3.9=1+18+27=46
Khi đó:
Tổng các số vừa tìm được là:
(a+a+…+a)+(b+b+…+b):10+(c+c+…+c):100
=46+46:10+46:100
=46+4,6+0,46
=51,06
Vậy tổng các số vừa tìm được là 51,06
Cho bốn chữ số 2 ; 3; 4 ; 1
a) Viết tất cả các số có bốn chữ số khác nhau
b) Tính tổng các số vừa viết một cách nhanh nhất
a ) 1234; 1243; 1324; 1342; 1423; 1432; 2134; 2143
2314; 2341; 2413; 2431; 3124; 3142; 3214; 3241
3412; 3421; 4123; 4132; 4213; 4231; 4312; 4321 .
b) Vì mỗi chữ số (1 ; 2 ; 3 ; 4) xuất hiện ở mỗi hàng 6 lần nên tổng của tất cả số vừa viết ở trên là:
(1 + 2 + 3 + 4) x 6 x 1000 + (1 + 2 + 3 + 4) x 6 x 100 + (1 + 2 + 3 + 4) x 6 x 10 + (1 + 2 + 3 + 4) x 6 x 1
= 60000 + 6000 + 600 + 60
= 66660
a) Cho bốn chữ số 0; 2; 4; 6. Với cùng cả bốn chữ số này có thể lập được bao nhiêu số có bốn chữ số.
b) Cho năm chữ số 0; 1; 3; 5; 7. Với cùng cả năm chữ số này có thể lập được bao nhiêu số có năm chữ
số
Với bốn chữ số 1; 2; 3; 4 có thể lập bao nhiêu só có đủ 4 chữ số ấy?
Gọi số có thể lập được là \(\overline{abcd}\)
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 1 cách chọn
Do đó: Có 4*3*2*1=24 cách