E=3x2+x+5 chứng minh biểu thức luôn âm,dương
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác 0 và khác – 3, biểu thức:
1 - x 2 x . x 2 x + 3 - 1 + 3 x 2 - 14 x + 3 x 2 + 3 x luôn luôn có giá trị âm.
Điều kiện x ≠ 0 và x ≠ -3
Ta có:
Vì x 2 - 4 x + 5 = x 2 - 4 x + 4 + 1 = x - 2 2 + 1 > 0 với mọi giá trị của x nên
- x 2 + 4 x - 5 = - x - 2 2 + 1 < 0 với mọi giá trị của x.
Vậy giá trị biểu thức luôn luôn âm với mọi giá trị x ≠ 0 và x ≠ -3
chứng minh rằng biểu thức
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a.x2+ 2x+ 3
=x2+ 2.x.1+ 12- 12+ 3
= (x+1)2 -1+3
= (x+1)2+ 2
Ta có: (x+1)2 ≥0
(x+1)2+ 3≥ 3>0
⇒x2+ 2x+ 3>0 mọi x
Vậy x2+ 2x+3>0 mọi x
b. -x2+ 4x- 5
= - (x2- 4x +5)
= - (x2- 2.x.2+ 22- 22+ 5)
= - ((x- 2)2- 4+ 5)
= - ((x- 2)2+1)
= -(x- 2)2 -1
Ta có: (x-2)2 ≥0
- (x-2)2 ≤0
- (x-2)2 +1≤ 1
⇒ -x2+ 4x- 5 <0 mọi x
Vậy -x2+ 4x- 5 <0 mọi x
Bài 5: Chứng minh biểu thức luôn dương hoặc âm với mọi x
A = x^2 - x +1
B = 3x^2 - 2x + 5
C = x(6 – x) -14
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
Bài 1: Chứng minh biểu thức luôn dương:
a, 49x^2-28x+7
b, x^2+2/5x+1/5
Bài 2 : chứng minh biểu thức luôn âm:
a,-9x^2+24x-12
b,-3x^2+2x-6
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
Bài 2 a
\(-9x^2+24x-12\)
\(=-\left(3x^2-2.3x.4+4^2-4\right)\)
\(-\left[\left(3x-4\right)^2-4\right]\)
\(=-\left(3x-4\right)^2+4\)
Sai đề chăng ?
Chứng minh biểu thức luôn không âm hoặc dương
\(E=3y^2+y+10\)
\(E=3y^2+y+10\)
\(=3\left(y^2+\frac{1}{3}y+\frac{1}{36}\right)+9\frac{11}{12}\)
\(=3\left(y+\frac{1}{6}\right)^2+9\frac{11}{12}>0\)
Vậy E luôn dương với mọi y
chứng minh biểu thức sau luôn âm hoặc dương
4x^2-8x+5
\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)
\(4x^2-8x+5\)
\(=\left(2x\right)^2-2×2×2x+1+4\)
\(=\left(2x-1\right)^2+1\)
\(\Rightarrow\left(2x-1\right)^2+1>0\)
Vậy biểu thức trên luôn dương !!!
Bài 4: Chứng minh rằng các biểu thức sau luôn luôn âm với mọi giá trị của biến a) M=-x² + 6x – 12 b) N= - 3x-x2 – 4 c)P =- 3x2+ 6x+20 d) Q= - 4x2 + 8x- 9y² – 6y – 35