cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Cho hai số tự nhiên m, n thỏa mãn: 24.m4+1=n2
Chứng minh rằng: m.n chia hết cho 5
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
Cho hai số tự nhiên m, n thỏa mãn điều kiện đa thức (3xn+2ym-3+ 1/2x6-ny5-m)chia hết cho đơn thức 8x4y. Khi đó m.n=....
bài tập :CMR
a, ab . (a+b) chia hết cho 2 (a,b là các số tự nhiên)
b, có hai số tự nhiên m , n thỏa mãn m.n. (m+n)= 2015 không
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Cho hai số tự nhiên m,n thỏa mãn: 24m4 +1= 1n2.Cmr mn chia hết cho5
Cho m;n thuộc N thỏa mãn:
24m4 + 1 = n2
CMR: m.n chia hết cho 5
Ta có:
24m4 + 1 = n2
25m4 - (m4 - 1) = n2
+ Nếu m chia hết cho 5 thì m.n chia hết cho 5 (đpcm)
+ Nếu m thuộc N; không chia hết cho 5, ta luôn chứng minh được m5 - m chia hết cho 5.
Thật vậy, với m không chia hết cho 4 thì m4 chỉ có thể tận cùng là 1 hoặc 6 chia 5 dư 1
=> m5 và m cùng dư trong phép chia cho 5
=> m5 - m luôn chia hết cho 5 với m thuộc N; m không chia hết cho 5
=> m.(m4 - 1) chia hết cho 5
Mà (m;5)=1 => m4 - 1 chia hết cho 5
Kết hợp với 25m4 chia hết cho 5 => n2 chia hết cho 5
=> n chia hết cho 5 => m.n chia hết cho 5
Vậy m.n chia hết cho 5 (đpcm)
cmr m.n(m+n) chia hết cho 2 ( với m,n là các số tự nhiên)
Nếu \(m,n\)cùng tính chẵn lẻ thì \(m+n⋮2\Rightarrow mn\left(m+n\right)⋮2\)
Nếu trong \(m,n\)có một số chẵn, một số lẻ (giả sử \(m\)chẵn) thì \(mn⋮2\)\(\Rightarrow mn\left(m+n\right)⋮2\)
Vậy \(mn\left(m+n\right)⋮2\forall m,n\inℕ\)
1. tìm n thuộc N
A) 4n-5 chai hết cho 2n-1
B) n^2+1 chia hết cho n-1
2.CMR
A) Tích 3 số tự nhiên liên tiếp chia hết cho 6
b) Tích 4 số tự nhiên liên tiếp chia hết cho 24
Bài 1
a) 4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n -1) - 3 chia hết cho 2n - 1
=> -3 chia hết ccho 2n -1
=> 2n -1 thuộc Ư(-3) = {1 ; -1 ; 3 ;- 3}
Xét 4 trường hợp , ta có :
2n - 1 = 1 => n = 1
2n - 1 = -1 => n = 0
2n - 1 = 3 => n = 2
2n - 1 = -3 => n = -1
b) n2 + 2 chia hết cho n - 1
n . n - n + n + 2 chia hết cho n -1
n(n - 1) + n + 2 chia hết hoc n - 1
=> n + 2 chia hết cho n -1
=> n - 1 + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thuộc Ư(3) = {1 ; -1; 3 ; -3}
Còn lại giống bài a