Cho tam giác ABC ( AC > AB ), kẻ trung tuyến AD. Từ B kẻ BE vuông góc với AD, từ C kẻ CF vuông góc với AD.
a, Cm tam giác BED = tam giác CFD.
b, Cm : CE // BF.
c, So sánh EB và EC.
Cho tam giác ABC ( AC > AB ), kẻ trung tuyến AD. Từ B kẻ BE vuông góc với AD, từ C kẻ CF vuông góc với AD.
a, Cm tam giác BED = tam giác CFD.
b, Cm : CE // BF.
c, So sánh EB và EC.
Cho tam giác ABC cân tại A, AD là trung tuyến. Từ D kẻ DE vuông góc với AB, DF vuông góc với AC
a, Chứng minh tam giác BED = tam giác CFD
b, Chứng minh AD là trung trực của EF
c, Từ B kẻ đoạn thẳng vuông góc AB tại B, từ C kẻ đoạn thẳng vuông góc AC tại C hai đoạn thẳng cắt nhau tại I. Chứng minh A, D, I thẳng hàng
d,Cho AB= 20cm, CI= 30cm. Tính DE
Cho tam giác ABC cân tại A, vẽ trung tuyến AM, từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: tam giác BEM = tam giác CFM
b, Chứng minh AM là trung trực của EF
c, Từ B kẻ đường thẳng BH vuông góc với AC tại H, từ C kẻ đường thẳng CI vuông góc với AB tại I, hai đường này cắt nhau tại D. Chứng minh: A, M, D thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A và có đường phân giác BE ( E € AC). Kẻ ED vuông góc BC ( D € BC)
a) CMR: Tam giác ABE = tam giác DBE
b) CMR: BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao của AB và DE. C/M AD song song FC
Bài 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) chứng minh: AD = DH
b) so sánh độ dài cạnh AD và DC
c) chứng minh tam giác KBC là tam giác cân
Mình kẻ hình đc rồi... nhưng hôg zải đc... zúp mình vs
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Cho tam giác ABC cần (AB=AC), kẻ BF vuông góc với AC. E là 1 điểm trên cạnh BC. Gọi I,K,H thứ tự là chân đường vuông góc kẻ từ E xuống BF,AB,AC.
a.Chứng minh: EK=BI. Từ đó tìm điều kiện của tam giác ABC để EK+EH=AD (AD là độ dài đường vuông góc kẻ từ A đến BC)
b.Gọi N là trung điểm của BE, P là giáo điểm của đường thẳng EK và đường thẳng qua C vuông góc với AC. Tính số đo góc ANP.
Câu hỏi:
Cho tam giác ABC , 3 đường trung tuyến AD,BE,CF. Từ E kẻ đường thẳng song song với AD cắt FD tại I
a) Chứng minh:IC// BE
b)Chứng minh rằng nếu AD vuông góc với BE thì tam giác IDC là tam giác vuông
hình như sai đề r, IC ko // BE đk đâu
Cho tam giác ABC vuông tại A phân giác của góc ABC cắt AC tại D từ D kẻ DH vuông góc với BC tại H
a, CM tam giác DAH cân
b, CM góc ABC = 2 DAH
c, kẻ phân giác của góc ACB tia này cắt AB tại E từ E kẻ EK vuông góc với BC tại K. Tính số đo góc KAH
cho tam giác ABC có góc A =1200, phân giác AD , kẻ DE vuông góc với AB,DF vuông góc với AC.Trên BE và FC đặt EK=FI
a,C/m tam giác DEF đều
b,C/m tam giác DIK cân
c,Từ C kẻ đường thẳng song song AD,cắt BA ở M.
C/m tam giác AMK đều
bai 1: cho tam giác ABC có góc a bằng 120 độ, phân giác Ad. Kẻ DH vuông góc với AD, DE vung góc với AC. Trên các đoạn EB và FC lấy hai điểm I và K sao cho EI = FK
a) chứng minh tam giác DEF là tam giác đều
b) chứng minh tam giác DIK là tam giác cân
c) Từ C kẻ đường thẳng song song với AD cắt BA tại M. Chứng minh tam giác MAC là tam giác đều. Tính AD biết CM=m và CF=n
bai 2: cho góc nhọn xOy . Điểm H nằm trên phân giác của góc xOy. Từ H dựng các dừong vuông góc xuống hai cạnh ox và oy( A thuộc Ox, B thuộc Oy)
a) chung minh tam giác HAB là tam giác cân
b) gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH . Chứng minh BC vuông góc với ox
Huyền ơi đề bài sai nặng rồi hỏi lại đi bài 1
đúng mà mình đăng từ đề cương thầy giáo cho ôn thi mà