Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2017 lúc 8:00

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2017 lúc 2:45

Chọn C

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 22:13

a)

Ta có:

     G là trọng tâm của tam giác ABC (giao điểm của ba đường trung tuyến);

     H là trực tâm của tam giác ABC (giao điểm của ba đường cao);

     I là giao điểm của ba đường phân giác của tam giác ABC;

     O là giao điểm của ba đường trung trực của tam giác ABC (Đường trung trực đi qua trung điểm của cạnh và vuông góc với cạnh tại trung điểm đó).

Mà tam giác ABC đều nên trong tam giác ABC đường trung tuyến đồng thời là đường cao và là đường phân giác.

Vậy bốn điểm G, H, I, O trùng nhau hay nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau.

b) 

 

Giả sử trong tam giác ABC có hai điểm trùng nhau là H (trực tâm của tam giác) và I (giao của ba đường phân giác).

Hay AD, BE, CF vừa là đường cao, vừa là đường phân giác của tam giác ABC.

Xét tam giác ADB và tam giác ADC có:

\(\widehat {BAD} = \widehat {CAD}\) ( vì AD là tia phân giác của góc BAC)

AD chung;

\(\widehat {ADB} = \widehat {ADC}(=90^0)\) (vì \(AD \bot BC\));

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta AEB = \Delta CEB\)(c.g.c). Suy ra: AB = BC ( 2 cạnh tương ứng). (2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều hay nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.

kaitovskudo
Xem chi tiết
Nguyễn Tất Đạt
22 tháng 6 2018 lúc 8:23

A B C O H M N K G I

Gọi G là trọng tâm của \(\Delta\)ABC. Từ A kẻ đường kính AK của (O), nối K vs B &C

2 đoạn AM và ON gặp nhau ở điểm I.

Xét đường tròn (O) có đường kính AK, 2 điểm B & C cùng thuộc đường tròn (O)

=> AB vuông BK và AC vuông CK. Mà CH vuông A; BH vuông AC

=> BH//CK; CH//BK (Quan hệ //, vuông góc) => Tứ giác BHCK là hình bình hành.

Ta có M là trung điểm đường chéo BC của hbh BHCK => M là trung điểm HK

Xét \(\Delta\)AKH: O là trung điểm AK; M là trung điểm HK => OM là đường trung bình \(\Delta\)AKH

=> OM//AH và OM=1/2.AH. Lại có: AN=NH=1/2.AH => OM//AN và OM=AN

=> Tứ giác AOMN là hbh. Do I là giao điểm 2 đg chéo nên I là trung điểm ON và AM

=> MI là trung tuyến \(\Delta\)OMN 

Ta thấy: G là trọng tâm \(\Delta\)ABC => MG=1/3.AM. Mà AM=2.MI

=> MG=1/3.2.MI=2/3.MI. Xét \(\Delta\)OMN có: Trung tuyến MI, điểm G thuộc MI

Và MG=2/3.MI (cmt) => G là trọng tâm của \(\Delta\)OMN. Mà G cũng là trọng tâm \(\Delta\)ABC

=> 2 tam giác ABC và OMN có chung 1 trọng tâm G (đpcm).

Đoàn Yến Nhi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2019 lúc 4:31

Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

A’ là trung điểm của BC Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

B’ là trung điểm của AC Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

C’ là trung điểm của BA Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’

Ta có :

Giải bài 7 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Vậy G ≡ G’ (đpcm)

Bảo Thiii
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2023 lúc 10:22

loading...  loading...  loading...  loading...  

Đợi anh khô nước mắt
Xem chi tiết
Võ Đông Anh Tuấn
19 tháng 5 2016 lúc 20:23

A B C M G H N P

l҉o҉n҉g҉ d҉z҉
19 tháng 5 2016 lúc 20:23

Hình này đc Hông 

Võ Đông Anh Tuấn
19 tháng 5 2016 lúc 20:25

Thiên Ngoại Phi Tiên sai rồi cậu lấy trêm mạn mà đúng gì nẫu nói G là trực tâm H là đường cao , o cách đều ba đỉnh mà sao không có ba diểm đó

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:52

a) Do M, N, P là trung điểm của các cạnh BC, CA, AB nên:

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = {x_M}\\\frac{{{x_B} + {x_A}}}{2} = {x_P}\\\frac{{{x_A} + {x_C}}}{2} = {x_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{x_B} + {x_A} = 2\\{x_A} + {x_C} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{x_B} =  - 1\\{x_C} = 5\end{array} \right.\)  và  \(\left\{ \begin{array}{l}\frac{{{y_B} + {y_C}}}{2} = {y_M}\\\frac{{{y_B} + {y_A}}}{2} = {y_P}\\\frac{{{y_A} + {y_C}}}{2} = {y_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_B} + {y_C} = 0\\{y_B} + {y_A} = 4\\{y_A} + {y_C} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 5\\{y_B} =  - 1\\{y_C} = 1\end{array} \right.\)

Vậy \(A\left( {3;5} \right),B\left( { - 1; - 1} \right),C\left( {5;1} \right)\)

b) Trọng tâm tam giác ABC có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{3 + \left( { - 1} \right) + 5}}{3} = \frac{7}{3}\\\frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{5 + \left( { - 1} \right) + 1}}{3} = \frac{5}{3}\end{array} \right.\)

Trọng tâm tam giác MNP có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 4 + 1}}{3} = \frac{7}{3}\\\frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{0 + 2 + 3}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy trọng tâm của 2 tam giác ABC và MNP là trùng nhau vì có cùng tọa độ.