\(\left[\left(x+32\right)+117\right]\cdot2=42\)
\(\left(\left(x+32\right)-17\right)\cdot2=42\)
[ ( x + 32 ) - 17 ] . 2 = 42
[ ( x + 32 ) - 17 ] = 42 : 2
[ ( x + 32 ) - 17 ] = 21
( x + 32 ) = 21 + 17
x + 32 = 38
x = 38 - 32
x = 6
Vậy x = 6
((x + 32) - 17 .2 = 42
<=> ( x + 32) - 17 = 42 : 2
<=> (x + 32) - 17 = 21
<=> x + 32 = 17 + 21
<=> x + 32 = 38
<=> x = 38 - 32
<=> x = 6
((x+32)-17).2=42
=>(x+32)-17 =42:2=21
=>x+32 =21+17=38
=>x =38-32=6
1. Tính:
a)\(81^3:3^5\)
b)\(16\cdot2^4\cdot\frac{1}{32}\cdot2^3\)
2. Tìm x:
a) \(\left(x-1\right)^5=32\)
b) \(\left(2^3:4\right)\cdot2^{\left(x+1\right)}=64\)
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
Tính
\(3\frac{1}{2}\cdot\frac{4}{49}\left[2,\left(4\right)\cdot2\frac{5}{11}\right]:\left(\frac{-42}{5}\right)\)
\(\left[0,\left(5\right).0,\left(2\right)\right]:\left(3\frac{1}{3}:\frac{33}{25}\right)-\left(\frac{2}{5}\cdot1\frac{1}{3}\right):\frac{4}{3}\)
a)\(\left(2^2+3\right)\cdot\left(x-5\right)+14=5^2124:2^2\)
b) \(3^2\cdot\left(x+1\right)-3=2^3+7^2\cdot2:14\)
c) \(2^2\cdot3\cdot\left(x+5\right)-6=\left(2^3+2^2\right)\cdot2^2\)
d) \(\left(2^2+1\right)\cdot\left(x+14\right)=5^2\cdot4+\left(2^5+3^2+7^2\right):2\)
e) \(\left(2^2-1\right)\cdot\left(x-1\right)=2^2+\left(6^2+2^6\right):\left(5^2\cdot2\right)\)
g) \(\left(3^2-2\right)\cdot\left(x-12\right)+35=5^2+279:3^2\)
nhìn thì cảm thấy khó nhưng lại rất dễ đó
Tìm x
\(\left(x\cdot1+1\right)+\left(x\cdot2+4\right)+\left(x\cdot3+7\right)+...+\left(x\cdot n+28\right)=200\)
\(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\)=100x
do vế trái luôn luôn lớn hơn hoặc =0
=> vế phải cx luôn luôn lớn hơn hoặc =0
=> bỏ giá trị tuyệt đối =100x
có 99x + ........... = 100x
trừ là ra nha bn
ta có:
|x+1/1.2|+|x+1/2.3|+...+|x+1/99.100|=100x
=>|x+1/1.2+x+1/2.3+...+x+1/99.100|=100x
<=>|(x+x+x+...+x)+1/1.2+1/2.3+....1/99.100|=100x
<=>|x.99+1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100|=100x
<=>|x.99+1-1/100|=100x
<=>|99x+99/100|=100x
Có 2 trường hợp
TH1
99x+99/100=100x
=>100x-99x=99/100
<=>x=99/100
=>x=99/100
TH2:
99x+99/100=-100x
-100x-99x=99/100
<=>-199x=99/100
<=>x=99/-19900( loại vì |99x+99/100| là số dương nên 100x là số dương mà x là sô âm nên 100x là số âm)
Tìm x, biết \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+\left|x+\dfrac{1}{3\cdot4}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=100x\)
Vì \(\left|x+\dfrac{1}{1\cdot2}\right|+\left|x+\dfrac{1}{2\cdot3}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|\ge0\forall x\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{1\cdot2}\right|+...+\left|x+\dfrac{1}{99\cdot100}\right|=x+\dfrac{1}{1\cdot2}+...+x+\dfrac{1}{99\cdot100}\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1\cdot2}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow99x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)=100x\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}=x\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=x\)
\(\Rightarrow x=1-\dfrac{1}{100}=\dfrac{99}{100}\)
giải pt
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.......+\frac{1}{2005.2006.2007}\right)x=\left(1\cdot2+2\cdot3+.....+2006.2007\right)\)