Tìm giá trị lớn nhầt của:C=1-(x+1)^2
Tìm giá trị nhỏ nhất của:
C= | x + 3 | + | x - 5 |
\(C=\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=\left|8\right|=8\)
dấu"=" xảy ra\(< =>-3\le x\le5\)
Giải:
C=|x+3| + |x−5| = |x+3| + |5−x| ≥ |x +3 + 5 − x| = |8| = 8C = |x+3| + |x−5| = |x + 3| + |5 − x| ≥ |x + 3 + 5 − x| = |8| =8
Dấu "=" xảy ra <=> −3 ≤ x ≤5 <=> −3 ≤ x ≤5
Giải:
C=|x+3| + |x−5| = |x+3| + |5−x| ≥ |x +3 + 5 − x| = |8| = 8C = |x+3| + |x−5| = |x + 3| + |5 − x| ≥ |x + 3 + 5 − x| = |8| =8
Dấu "=" xảy ra <=> −3 ≤ x ≤5 <=> −3 ≤ x ≤5
Tìm cực trị của:
C = \(\sqrt{-x^2+6x}\)
D = \(\sqrt{6x-2x^2}\)
tìm giá trị của x để giá trị của biểu thức A=1/2-[x-2} đạt giá trị lớn nhất tìm giá trị lớn nhất đó
Vì |x-2| \(\ge\) 0 với mọi x
=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x
=>MaxA=1/2
Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)
Vậy..............
a) Tìm giá trị nhỏ nhất:
A = /x - 3/ +1
b) Tìm giá trị lớn nhất
B = -100 - /7 - x/
c) Tìm giá trị lớn nhất
C = -(x +1) ^2 - /2-y/ +11
d) Tìm giá trị nhỏ nhất
D = (x - 1)^2 + /2y + 2/ + 3
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
Cho P=\(\dfrac{1}{x^2-2x}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
a) Rút gọn P
b) Tính giá trị của P biết | 2+x | =1
c) Tìm x để P đạt giấ trị lớn nhất .Tìm giá trị lớn nhất đó
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
1)Tìm giá trị lớn nhất và nhỏ nhất của A=2x+1/x^2+2
2) tìm giá trị lớn nhất của E=1000/x^2+y^2-20(x+y)+2210
1) \(A=\frac{2x+1}{x^2+2}\)
\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2
Cho Q = (x-1)^2 -2(x+3)^2. Với giá trị nào của x thì Q đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
\(Q=\left(x-1\right)^2-2\left(x+3\right)^2=x^2-2x+1-2x^2-12x-18=-x^2-14x-17\)
\(Q=32-\left(x^2+14x+49\right)=32-\left(x+7\right)^2\)
Ta thấy (x+7)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là =0
Mà Q lớn nhất khi (x+7)2 nhỏ nhất
Vậy Q lớn nhất = 32-0 = 32 khi và chỉ khi (x+7)2 = 0 => x = -7
Tìm x, y để biểu thức M đạt giá trị lớn nhất và tìm giá trị lớn nhất đó M=|15/2*y-3*x|-|4x-10y|-2*(x+1)*(x+1)+2020
ai giải giúp mình bài này với mình đang cần gấp.
1) a) tìm giá trị nhỏ nhất: x^2-x+1
b) tìm giá trị lớn nhất :-x^2+x-y^2-4y-6
1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4
=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)
dấu = xảy ra khi:
x-1/2=0
x=1/2
vậy GTNN của x^2-x+1 là 3/4 tại x=1/2
b)-x^2+x-y^2-4y-6
=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4
=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4
=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)
dấu = xảy ra khi:
x-1/2=0 và y+2=0
x=1/2 và y=-2
vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2