CMR \(1.3.5.....99=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{100}{2}\)
\(CMR:1.3.5...19=\)\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Ta có: \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}....\frac{20}{2}=\frac{11.12.13....20}{2^{10}}=\frac{11.13.15....19.\left(12.14.16.18.20\right)}{2^{10}}=\)
\(=\frac{11.13.15....19.\left(\left(3.2^2\right).\left(7.2\right).\left(2^4\right).\left(9.2\right).\left(5.2^2\right)\right)}{2^{10}}=\frac{11.13.15....19.\left(3.5.7.9\right).2^{10}}{2^{10}}=\)
\(=1.3.5.7.9.11.13.15....19\left(Đpcm\right)\)
CMR:
1.3.5...19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Bạn tham khảo linh dẫn dưới đây nha bạn:
Câu hỏi của Đức Minh Nguyễn - Toán lớp 6 - Học toán với OnlineMath
a) CMR: 1.3.5...19=\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Bài Toán :
CMR : \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=1.3.5.....99\)
Ta có :
\(A=1.3.5.....99=\frac{1.2.3.....100}{2.4.6.....100}=\frac{1.2.3.....100}{2.\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)
=> \(A=\frac{51.51.53.....100}{2.2.2....2}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
Vậy ta có đpcm
Nhân cả 2 vế với 1. 2 . 3 . ... . 50 . 2\(^{50}\)
Lới giải chi tiết bạn có thể lên mạng tìm hiểu nhé !
CM : \(1.3.5.....99=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
\(1.3.5....99=\frac{1.2.3.4....99.100}{2.4.6...100}=\frac{\left(1.2.3....50\right).\left(51.52.53...100\right)}{2^{50}.\left(1.2.3...50\right)}\)
\(=\frac{51.52.53....100}{2^{50}}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}......\frac{100}{2}\)
Ta có :
\(1.3.5.....99=\frac{1.2.3.4.....99.100}{2.4.6......100}\)
\(=\frac{1.2.3......99.100}{1.2.2.2.2.3......2.50}\)
\(=\frac{1.2.3.4......99.100}{2^{50}.1.2.3......50}\)
\(=\frac{51.52.....100}{2^{50}}\)
\(=\frac{51}{2}.\frac{52}{2}...........\frac{100}{2}\) (ĐPCM)
1/TINH
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(\frac{2^3}{1.3}.\frac{3^2}{2.4}.\frac{4^2^{^{^{ }}}}{3.5}......\frac{99^2}{98.100}\)
2/CMR
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}+...+\frac{1}{10000}< \frac{1}{2}\)
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Chứng minh rằng \(1.3.5....19\) = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)
Đặt \(A=\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
\(=\frac{\left(11.13.15.17.19\right).12.14.16.18.20}{2^{10}}\)
\(\frac{\left(11.13.15.17.19\right).\left(3.2^2\right).\left(7.2^1\right).2^4.\left(9.2^1\right).\left(5.2^2\right)}{2^{10}}\)
\(=\frac{\left(1.3.5.7.9.11.13.15.17.19\right).2^{10}}{2^{10}}\)
\(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}.....\frac{20}{2}\)=11.12.13.....20
Để 1.3.5......19=11.12.13...20 thì \(\frac{1.3.5....19}{11.12.13....20}\)vì 1;3;5;..;19 là ~ số lẽ nên phần mẫu nhưng số lẽ có trên tử sẽ lược bỏ đi còn: \(\frac{1.3.5.7.9}{12.14.16.18.20}=\frac{1.3.5.7.3.3}{2.2.3.7.2.2.2.2.2.2.3.3.2.2.5}=>\frac{1}{2^{10}}\)
=> 1.3.5.....19=\(\frac{11}{2}.\frac{12}{2}....\frac{20}{2}\)vô lí
mk hok lóp 7 dzô làm lóp 6 hơi ngượng nên chắc sai dữ lắm đây
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Chứng minh rằng:\(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)