Cho y^2+yz+z^2=a^2
x^2+xz+z^2=b^2
x^2+zy+y^2=c^2
xy+yz+zx=0
Tính giá trị của đa thức A=(a+b+c)*(a+b-c)*(b+c-a)*(a+c-b)
Cho y^2+yz+z^2=a^2
x^2+xz+z^2=b^2
x^2+zy+y^2=c^2
xy+yz+zx=0
Tính giá trị của đa thức A=(a+b+c)*(a+b-c)*(b+c-a)*(a+c-b)
Cho y^2+yz+z^2=a^2
x^2+xz+z^2=b^2
x^2+zy+y^2=c^2
xy+yz+zx=0
Tính giá trị của đa thức A=(a+b+c)*(a+b-c)*(b+c-a)*(a+c-b)
Số lít dầu đã lấy đi là :
211 ‐ ﴾ 85 + 46 ﴿ = 80 ﴾lít﴿
Mổi thùng bị lấy số lít dầu là :
80 : 2 = 40 ﴾ lít ﴿
Thùng thứ nhất lúc đầu có số lít dầu là :
85 + 40 = 125 ﴾ lít ﴿
Thùng thứ 2 lúc đầu có số lít dầu là :
46+40=86 ﴾ lít ﴿
b1: Cho a,b,c là các số dương thỏa mãn \(a^2+b^2+c^2=3\).CMR \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
b2:Cho x,y,z duong.CMR \(\frac{xy}{x^2+yz+zx}+\frac{yz}{y^2+zx+xy}+\frac{zx}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi
bài 1
\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)
\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)
\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Bài 2 là chuyên Bình Thuận, 2016-2017
Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:
\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)
Cộng từng vế của 3 BĐT trên. ta được:
\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)
Đẳng thức xảy ra khi x = y = z
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-zx\ne0;z^2-xy\ne0\) thỏa mãn \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\). CMR \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
1, Cho a+b+c=0. Chứng minh rằng a3+b3+c3 = 3abc
2,Tinh giá trị của biểu thức B=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)biết xy+xz+yz=0 và xyz khác 0
3, Khi chia đa thức C(x) cho x-2 thì dư 4,chia cho x+5 thì dư -17 . Tìm số dư khi chia đa thức C(x) cho x2+3x-10.
1/ xác định a;b;c;d để : x^4 + ax^3 + bx^2 - 8x +4 = (x^2 + cx +d)^2
2/ cho x^2 +y^2 +z^2 =10 . tính giá trị biểu thức A= (xy+yz+xz)^2 + (x^2-yz)^2 + (z^2 -xy)^2
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
Cho x^2-yz/a=y^2-xz/b=z^2-xy/c. CM: a^2-xy/c=b^2-ca/y=c^2-ab/z