Cho \(a+b+c=a^2+b^2+c^2=1\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) \(\left(a\ne0,b\ne0,c\ne0\right)\)
Chứng minh rằng: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Cho a, b, c là các số thực khác 0. Tìm các số thực x, y, z khác 0 thỏa mãn
\(\dfrac{xy}{ay+bx}=\dfrac{yz}{bz+cy}=\dfrac{zx}{cx+az}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(cho\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức của A\(=\dfrac{-2x+y+5z}{2x-3y-6z}\)(với x,y,z\(\ne0\)và a+b+c=0)
Biết \(x^2+xy+\dfrac{y^2}{3}=2019\) ; \(z^2+\dfrac{y^2}{3}=1011\) ; \(x^2+xz+z^2=1008\) và x ≠ 0; z ≠ 0 ; x ≠ -z. CMR \(\dfrac{2z}{x}=\dfrac{y+z}{x+z}\)
1. tìm x, biết: \(x=\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
2. tìm x,y,z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
làm ơn giúp mk
Tìm x, y, z trong ác trường hợp sau:
a) 2x = 3y = 5z và | x - 2y | =5;
b) 5x = 2y, 2x = 3z và xy = 90;
c) \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
tìm x,y,z biết:
\(\dfrac{xy}{12}=\dfrac{yz}{20}=\dfrac{zx}{15}\) và xy+yz+zx= 188
1. Tìm x, y biết:
a) \(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\) và x + 2y - z = 6
b) \(\dfrac{x}{y}=\dfrac{2}{3}\) và x2 + y2 = 52
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng:
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Bài 1:
1) Tìm x,y,z biết: 3.(x-1)=2.(y-2) ; 5.(y-2)=4.(z-3) và 2.x+3.y-z=79
2) Cho 3 số thực a,b,c khác 0,a+b+c khác 0. Thỏa mãn:
\(\dfrac{3a+b+c}{a}=\dfrac{a+3b+c}{b}=\dfrac{a+b+3c}{c}\)
Tính giá trị M = \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
Giúp mình với mình đang cần gấp! Thanks!