phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm nhiều hạng tử.
a,x^ - x -y^2 -y
b, 9x + y^2 -16z^2 + 6xy
c, a^3 - a^2x - ay + xy
d, 2x^2 - 8y^2 + 3x + 6y
e, xy. ( x + y) + yz .( y + z )+ xz . (x+ z) + 2xyz
Tính giá trị của biểu thức A = \(\dfrac{yz}{x^2}\)+\(\dfrac{xz}{y^2}\)+\(\dfrac{xy}{z^2}\) , biết rằng xy+yz+xz=0 và xyz \(\ne\) 0
Phân tích:
a)(x-y)3+(y-z)3+(z-x)3
b)x.(y2-z2)+y.(z2-x2)+z.(x2-y2)
c)xy.(x-y)-xz.(x+z)-yz.(zx-y+z)
d)x.(y+z)2+y.(z-x)2+z.(x+y)2-4xyz
cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) tính giá trị của biểu thức:
\(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)
1. Cho a+b+c=a^2+b^2+c^2=1 và a/x=b/y=c/z
Cm: xy+yz+zx=0
2.Cho x/a+y/b+z/c=1 và a/x^2+b/y^2+c/z^2=0
Tính: A=x^2/a^2+y^2/b^2+z^2/c^2
3.Tìm a,b biết:(a-1)^2+(b-1)^2=10a+b
và 0<a<10; -1<b<10
cho x^2+y^2+z^2 lớn hơn hoặc bằng 3 chứng minh x+y+z+xy+yz+xz bé hơn hoặc bằng 6
Cho x,y,z đôi một khác nhau và \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0. Tính giá trị của A= \(\frac{yz}{x^2+2yz}\)+\(\frac{xz}{y^2+2xz}\)+\(\frac{xy}{z^2+2xy}\)
Biết 1/x + 1/y + 1/z = 0 . Khi đó giá trị của biểu thức A = xy/x^2+xz/y^2+xy/z^2