Cho tam giác ABC co AB = 6cm, AC = 8cm, các đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài BC
Cho tam giác ABC có AB=6cm,AC=8cm và các đường trung tuyến BD,CE vuông góc với nhau .độ dài đoạn BC bằng bao nhiêu
Gọi G là trong tâm
GE = x => CG =2x ; GD =y =>BG =2y
=> pi ta go
\(\int^{x^2+4y^2=16}_{y^2+4x^2=9}\Leftrightarrow5\left(x^2+y^2\right)=25\Leftrightarrow4x^2+4y^2=\frac{5}{4}=BC^2\Leftrightarrow BC=\frac{\sqrt{5}}{2}\)
cho tam giác ABC các đường trung tuyến BD và CE vuông góc với nhau tại H . Biết AB = 5 cm ; AC = 6cm .tính cạnh BC.
Cho tam giac ABC, các đường trung tuyến BD và CE cắt nhau tại G. gọi M,N lần lượt là trung điểm của BG và CG.
Nếu BD vuông góc với CE thì MNDE là hình gì? Vì sao?
Tính BC biết AB=6cm,AC=8cm
Bài 3. Cho tam giác ABC có các đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài BC biết BD = 9cm, CE = 12cm.
Tham khảo:
Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có:
CI/CE = 2/3
hay CI/12 = 2/3
<=> CI = 2/3.12
<=> CI = 8 cm
Tương tự, ta có:
BI/BD = 2/3
hay BI/9 = 2/3
<=> BI = 2/3.9
<=> BI = 6 cm
t.g BIC vuông tại I nên:
BC^2 = IC^2 + BI^2
<=> BC^2 = 8^2 + 6^2
<=> BC^2 = 100
<=> BC = 10 cm
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.
Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE
Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.
Xét tam giác BGC vuông tại G.
Ta có: BC2 = BG2 + CG2 (định lý Pytago)
=> BC2 = 62 + 82
=> BC2 = 100
=> BC = \(\sqrt{100}\) = 10 cm
Vậy BC = 10 cm.
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm. Kẻ đường trung tuyến AM (MÎBC). Qua M kẻ đường thẳng vuông góc với BC cắt AC tại D.
a) Chứng minh
b) Tính độ dài đoạn thẳng BC và DM.
c) Gọi E là chân đường vuông góc kẻ từ C đến đường thẳng BD. Chứng minh rằng:
CD.CA + BD.BE = BC2
Mọi người giúp em với ạ cần gấp
Cho tam giác ABC có AB = 6cm; AC = 8cm. Các đường trung tuyến BD, BE vuông góc với nhau. Gọi G là giao điểm của BD và CE. Đặt GE = x; GD = y. Tính:
a) x2 + (2y)2 và (2x)2 + y2
b) Độ dài BC
1. Cho tam giác ABC có AB=6cm, AC=8cm .Các đường trung tuyến BD và CE vuông góc với nhau. Tính BC.
2. Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh : AH=3HD
cảm ơn các bạn trước nhaaa
Tam giác ABC trung tuyến BD và CE vuông góc với nhau . Biết AB =5 cm . AC = 10cm . Tính độ dài cạnh BC
cho tam giác ABC vuông tại A có AB = 6cm AC = 8cm
a) tính độ dài cạnh BC
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC ) từ D vẽ DE vuông góc với BC ( E thuộc BC ) chứng minh tam giác ABD=tam giác EBD
c)chứng minh BD là đường trung trực của đoạn thẳng FC
Các bạn chỉ cần làm giúp mình câu 3 thôi nhéa) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
cre baji