cho a+b+c=0. tính giá trị biểu thức:A=(a-b)c^3+(c-a)b^3+(b-c)a^3
cho a+b+c=0. tính giá trị biểu thức:A=(a-b)c^3+(c-a)b^3+(b-c)a^3
cho a,b,c khác 0 thỏa mãn:
a+b+c khác 0 và a3+b3+c3=3abc.Tính giá trị biểu thức:A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow a=b=c}\)
\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{2a.2a.2a}{a.a.a}=\frac{8a^3}{a^3}=8\)
Cho a,b,c khác 0 thỏa mãn
a+b+c khác 0 và a3+b3+c3=3abc.Tính giá trị biểu thức:A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(a;b;c\ne0;a+b+c\ne0\Rightarrow a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu "=" xảy ra <=> a = b = c
Ta có: a3 + b3 + c3 = 3abc => a = b = c
Nên \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)
Vậy A = 8
P/s: Không chắc lắm, mong các bạn góp ý. Cảm ơn
Bạn Hồ Khánh Châu là sai rồi !
nó có dương đâu mà cô-si ? nó chỉ mới khác 0 mà
Bài 1.Tính giá trị biểu thức:
a) A = a(b+3)-b(3+b tại a=2003;b=1997
b) C = xy(x+y)-2x-2y tại xy=8;x+y=7
Bài 2.Tìm x, biết:
a) x4-16x2=0 b) x8+36x4=0
Bài 2:
a: \(x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b: \(x^8+36x^4=0\)
\(\Leftrightarrow x^4=0\)
hay x=0
a(b+3)-b(3+b)
=(3+b)(a-b)
Thay số, có: (3+1997).(2003-1997)
= 2000.6 =12000
xy(x+y)-2x-2y
xy(x+y)- 2(x+y)
(x+y).(xy-2)
Thay số, co: 7. (8-2)
7.4=28
Cho 3 số a,b,c có tổng khác 0 và thỏa mãn: 3phần a+b=2phần b+c=1phan c+a.Tính giá trị của biểu thức:A=a+b+c phần a+b-2c (giả thiết các tỉ số đều có nghĩa)
cho a,b,c khác 0 và a-b-c=0,tính giá trị của biểu thức:A=\(\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
Ta có: a - b - c = 0 \(\Rightarrow\hept{\begin{cases}b-a=-c\\a-c=b\\b+c=a\end{cases}}\)
\(A=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)=\frac{a-c}{a}.\frac{b-a}{b}.\frac{c+b}{c}=\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=-1\)
a) Tìm giá trị nhỏ nhất của biểu thức \(x^2-8x+5\)
b) Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\) ≠ 0
Tính giá trị của biểu thức N =\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Tính giá trị biểu thức:
A= (b+a)+(c-d)-(c+a)-(b-d)
B=(a-d)-(d+a)-(c-d)+(c+b)
Tham khảo
\(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)
\(A=b+a+c-d-c-a-b+d\)
\(A=\left(b-b\right)+\left(a-a\right)+\left(c-c\right)+\left(-d+d\right)\)
\(A=0\)
\(B=\left(a-d\right)-\left(d+a\right)-\left(c-d\right)+\left(c+b\right)\)
\(B=a-d-d-a-c+d+c+b\)
\(B=\left(a-a\right)+\left(d-d+d\right)+\left(-c+c\right)+b\)
\(B=d+b\)
a) Ta có: \(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)
\(=a+b+c-d-c-a-b+d\)
=0
b) Ta có: \(B=\left(a-d\right)-\left(a+d\right)-\left(c-d\right)+\left(c+b\right)\)
\(=a-d-a-d-c+d+c+b\)
=b-d