Tham khảo
\(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)
\(A=b+a+c-d-c-a-b+d\)
\(A=\left(b-b\right)+\left(a-a\right)+\left(c-c\right)+\left(-d+d\right)\)
\(A=0\)
\(B=\left(a-d\right)-\left(d+a\right)-\left(c-d\right)+\left(c+b\right)\)
\(B=a-d-d-a-c+d+c+b\)
\(B=\left(a-a\right)+\left(d-d+d\right)+\left(-c+c\right)+b\)
\(B=d+b\)
a) Ta có: \(A=\left(b+a\right)+\left(c-d\right)-\left(c+a\right)-\left(b-d\right)\)
\(=a+b+c-d-c-a-b+d\)
=0
b) Ta có: \(B=\left(a-d\right)-\left(a+d\right)-\left(c-d\right)+\left(c+b\right)\)
\(=a-d-a-d-c+d+c+b\)
=b-d