Bài 1: Cho x+y=1 và x,y dương. Tìm GTNN A=\(\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Bài 2: Cho tam giác MNP có góc M= góc N+ 2.gócP, và độ dài 3 cạnh là 3 số tự nhiên liên tiếp
Tính đọ dái 3 cạnh đó
cho tam giác MNP có góc M = góc N+ 2 lần góc P, và độ dài 3 cạnh là 3 số tự nhiên liên tiếp . Tính độ dài các cạnh của tam giác
Trên cạnh BC lấy điểm D sao cho CD=CA. Gọi góc CAD, DAB, ADC lần lượt là A1, A2,D1
Ta có
A=A1+A2=D1+A2=B+2.A2
Theo đề bài ta có A=B+2.C
=>C=A2
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA
=>AB/DB=BC/AB
Đặ BC=a ; AB=c ;Ac=b
c/(a−b)=a/c => c2 = a(a−b)
Do các cạnh của tam giác ABC là ba STN liên tiếp và a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
Bài 1: Giải phương trình sau: \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Bài 2: Cho tam giác ABC vuông tại A. G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC=a, và góc giữa hai véctơ \(\overrightarrow{GB}\) và \(\overrightarrow{GD}\) nhỏ nhất.
1.
\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)
\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)
\(\Leftrightarrow a=\sqrt{3}b\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
\(\Leftrightarrow2x^2-4x+2=0\)
\(\Leftrightarrow x=1\)
Bài 2:
Đặt \(AB=x>0\)
\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)
\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)
\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)
Ta có:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)
\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)
\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)
\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)
\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)
Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)
Cho tam giác ABC có góc A = góc B + 2(góc C) và độ dài 3 cạnh của tam giác là 3 số tự nhiên liên tiếp
a) Tính độ dài 3 cạnh tam giác
Cho Tam giác ABC có góc A = góc B + 2 góc C và độ dài 3 cạnh của tam giác là 3 số tự nhiên liên tiếp.
a) Tính độ dài các cạnh của tam giác.
b) Tính số đo của góc A.
1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.
2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào bằng 0?
4) Tìm hai số x và y sao cho x + y = xy = x : y (y khác 0).
5) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: a2 + a - p = 0
6) Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA : MB : MC = 1:2:3. Tính số đo góc AMB ?
7) Tìm x,y biết: \(\frac{6}{\left(x-1\right)^2+2}=|y-1|+|y-2|+|y-3|+1\)
8) Cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
So sánh M với \(\frac{1}{12}\)
9) Cho các số nguyên dương a,b,c,d,e thỏa mãn: a2 + b2 + c2 + d2 + e2 chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số.
10) Cho biểu thức: A = \(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
Tính giá trị của biểu thức B = \(4|A|+\frac{1}{3^{100}}\)
9) Cho tam giác ABC có góc A bằng \(^{90^o}\). Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BC + DE.
10) Tam giác ABC cân ở B có góc ABC = \(80^o\). I là một điểm nằm trong tam giác, biết góc IAC = \(10^o\)và góc ICA = \(30^o\). Tính góc AIB = ?
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)\(\Leftrightarrow ab.\left(b+c\right)=bc.\left(a+b\right)\Leftrightarrow ab^2+abc=b^2c+abc\Leftrightarrow ab^2=b^2c\Leftrightarrow a=c\left(b\ne0\right)\)(1)
\(\frac{bc}{b+c}=\frac{ca}{c+a}\Leftrightarrow bc.\left(c+a\right)=ca.\left(b+c\right)\Leftrightarrow bc^2+abc=c^2a+abc\Leftrightarrow b=a\left(c\ne0\right)\)(2)
Từ (1) và (2) => a=b=c
\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=0\)
-------------------------------------------------ngăn cách bài--------------------------------------------
ta có: \(VT=\frac{6}{\left(x-1\right)^2+2}\le3\)(--)
dấu = xảy ra khi x-1=0
=> x=1
\(\left|y-1\right|+\left|y-3\right|=\left|-y+1\right|=\left|y-3\right|\ge\left|-y+1+y-3\right|=2\)(2)
\(\left|y-2\right|\ge0\)(1)
Từ (1) và (2) \(\Rightarrow VP=\left|y-1\right|+\left|y-3\right|+\left|y-2\right|+1\ge3\)(3)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
\(\hept{\begin{cases}\left(-y+1\right).\left(y-3\right)\ge0\\y-2=0\end{cases}\Rightarrow y=2}\)
Mà VT=VP => \(\frac{6}{\left(x-1\right)^2+3}=\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=3\)
Vậy \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)
Bài 1: Cho tam giác MNP vuông tại M, MK là đường cao, MN=6,25cm; NP=10cm.
a, Tính Mk và giải tam giác vuông MKP.
b, Qua P kẻ đường thẳng d vuông góc với MP và cắt MK tại I. Tính PI và độ dài đường phân giác MQ (Q thuộc NP) của góc NMP.
Bài 2: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Gọi I,K thứ tự là hình chiếu của H trên AB,AC.
a, Biết BH=2, HC=8. Tính AH, AB, AC.
b, Biết sinB+3cosC=1. Tính tỉ số lượng giác góc B.
c, Chứng minh: \(\frac{1}{^{HI^2}}+\frac{1}{HC^2}=\frac{1}{HK^2}+\frac{1}{HB^2}\)
Bài 3: Cho tam giác ABC có góc A=60 độ, đường cao AH và CK cắt nhau tại I.
a, Chứng minh: CH.CB=CI.CK.
b, Chứng minh: SABC = \(\frac{\sqrt{3}}{4}\).AB.AC
c, Cho góc BAH=x, góc CAH=y. Tính M=sinx.cosy+siny.cosx.
Bài 1: Tìm x,y, biết rằng: x:y:z=3:4:5 và 5z2 - 3x2-2y2 = 594
Bài 2: Cho A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm số nguyên x để A có giá trị lầ số nguyên.
Bài 3: Rút gọn biểu thức:
a) A= | x-3,5|+|4,1-x| ;\(3,5\le x\le4,1\)
b) B= |x+1|+|x-3|
Bài 4: Tìm GTLN của biểu thức sau
D= \(\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\)
E=\(\frac{27-2x}{12-x};x\in Z\)
Bài 5: Hai cạnh của một tam giác dài 25cm và 26cm.Tổng độ dài hai đường cao tương ứng là 48,8cm.Tính độ dài mỗi đường cao nói trên.
Bài 6: Cho hàm số y = f(x) = ax có đồ thị qua điểm M(-2;3)
a) Xác định hệ số a
b) Vẽ đồ thị hàm số đã cho
c) Xác định tọa độ của một điểm I biết I thuộc đồ thị hàm số đã cho và có tung độ bằng -6
d) CMR: Với mọi giá trị x1,x2 thỏa mãn x1<x2 thì f(x1)>f(x2)
Bài 7 Cho tam giác ABC có 3 góc nhọn, vẽ ra phía ngoài hai tam giác vuông cân tại A là ABD và ACE.
a)CM tam giác DAC= tam giác BAE
b) CM DC=BE và DC vuông góc với BE
c) Gọi M là trung điểm của BC. Trên AM lấy điểm K sao cho M là trung điểm của AK.CM tam giác ADE = tam ggiasc BAK và AM vuong góc với DE
d) Gọi P và Q theo thứ tự là trung điểm cỷa DB và EC. CM tam giác MPQ là tam giác vuông cân
Bài 1:
a)Tính:
\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{2012\cdot2015}\)
b)Tìm x thỏa mãn:
|x+5|+|x-8|=13
Bài 2:Cho a;b;c khác nhau và khác 0 thỏa mãn:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính \(A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Bài 3:
1)Cho hàm số \(f\left(x\right)=\frac{4}{x};g\left(x\right)=x^2;h\left(x\right)=-2x^2-\frac{5}{x}\)
a)Tính f(1);g(-1);h(-5)
b)Tính k(x)=f(x)+g(x)+h(x).Tính x để k(x)=0
2)Vẽ đồ thị của hàm số y=-2|x|
Bài 4:
1)Cho tam giác ABC vuông tại A có góc B=60 độ.AB=5cm.
a)Tính góc C và độ dài cạnh AC
b)Lấy H;K;I lần lượt là trung điểm BC;AC và AB.AH cắt BK tại G.Chứng minh C;G;I thẳng hàng và IH vuông góc với KH
2)Cho a;b;c là độ dài 3 cạnh của 1 tam giác;c là số đo cạnh huyền.Chứng minh:
\(a^{2n}+b^{2n}\le c^{2n}\left(n\inℕ^∗\right)\)
Bài 1:
a) \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=\frac{1}{3}\cdot\frac{2013}{4030}=\frac{671}{4030}\)
Bài 2:
ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)
\(=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Bài 3:
a) f(1) = 4/1 = 4
=> f(1) = 4
g(-1) = (-1)^2 = 1
=> g(-1) = 1
h(-5) = -2.(-5)^2 - 5/(-5) = -2.25 + 1 = -50 + 1 = -49
=> h(-5) = -49
b) ta có: k(x)=f(x)+g(x)+h(x)
=> k(x) = 4/x + x^2 -2x^2 - 5/x
k(x) = - (5/x - 4/x) - (2x^2-x^2)
k(x) = -1/x - x
\(k_{\left(x\right)}=\frac{-1}{x}-\frac{x.x}{x}=\frac{-1-x^2}{x}\)
c) Để k(x) = 0
=> -1-x^2/x = 0 ( x khác 0)
=> -1-x^2 = 0
=> x^2 = -1
=> không tìm được x
Bài 4:
a) Xét tam giác ABC vuông tại A
có: góc B + góc C = 90 độ ( 2 góc phụ nhau)
thay số: 60 độ + góc C = 90 độ
góc C = 90 độ - 60 độ
góc C = 30 độ
=> AB = BC/2 ( cạnh đối diện với góc 30 độ)
thay số: 5 = BC/2
=> BC = 5.2
=> BC = 10 cm
Xét tam giác ABC vuông tại A
có: AC^2 + AB^2 = BC^2 ( py - ta - go)
thay số: AC^2 + 5^2 = 10^2
AC^2 + 25 = 100
AC^2 = 75
\(\Rightarrow AC=\sqrt{75}\) cm