Cho biểu thức: A = ( 3x-2y )^2 + ( y+z )^2 + ( z- x )^2 .
Tìm x ; y ; z thuộc Z để 0 < hoặc = A < hoặc = 1
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
cho x/2, y/5,z/7 tìm giá trị của biểu thức biết A=(x-y+z)/(x+2y-z)
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
a) Tìm giác trị nhỏ nhất của biểu thức A=\(3x^2+y^2+4x-y\)
b) Cho các số thực x,y,z thỏa mãn 2x+2y+z=4 .Tìm giá trị lớn nhất của biểu thức B=2xy+yz+zx
mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
Tính giá trị của biểu thức:
a/ (x+ y+ z)2 + (z -2y)2 + 2( x+y+z) (2y-z) tại x=3 ; y= -5; z=1
b/(y-3x)2 + (x+y-z)2 - 2(y-3x)(x+y-z) tại x=-2; y=-2017; z=-2
c/ x3 + 3xy+ y3 biết x+y=1
d/ x3 - 3xy - y3 biết x-y=1
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
d) \(x^3-3xy-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=\left(x^2+xy+y^2\right)-3xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=1^2=1\)
@Đoàn Đức Hiếu lm a,b đi nhé
Cho xyz khác 0 thỏa mãn: x^3y^3 + y^3z^3 + z^3x^3 = 3x^2y^2z^2
Tính giá trị của biểu thức: M = ( 1+ x/y )( 1 + y/z )( 1 + z/x )
3x²y²z² = x³y³ y³z³ z³x³
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3
1. Cho x,y thỏa mãn : 3x+2y =13. Tìm GTNN của P=x2 + y2
2. Cho x,y,z là 3 số thỏa mãn điều kiện:\(\hept{\begin{cases}x+y+z=0\\x^2+y^2+z^2=14\end{cases}}\)
Tính giá trị của biểu thức A= 1+x4 + y4 + z4