Tìm số tự nhiên n sao cho n+4 chia hết cho n+1
a,Tìm các số tự nhiên x,y sao cho (2x +1)(y-5)=12
b/Tìm số tự nhiên n sao cho n + 5 chia hết cho n +1
c/Tìm số tự nhiên n sao cho 2n + 13 chia hết cho 2n +3
d/Tìm số tuwnhieen n sao cho 4n + 5 chia hết cho 2n +1
1) Tìm số tự nhiên n sao cho 2n+5 chia hết cho 2n -1
2) Tìm số tự nhiên n sao cho 3.n+5 chia hết cho 3.n-1
3) Tìm số tự nhiên n sao cho n+5 chia hết cho n-1
Giải tóm tắt dễ hiểu nha mọi người. Cảm ơn !
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
Tìm số tự nhiên n , sao cho :
a) n+4 chia hết cho n+1
b) n2+4chia hết cho n+2
c) 13n chia hết cho n-1
c) 13n⋮n-1
13n-13+13⋮n-1
13n-13⋮n-1 ⇒13⋮n-1
n-1∈Ư(13)
Ư(13)={1;-1;13;-13}
⇒n∈{2;0;14;-12}
b) Bạn tham khảo nha: https://olm.vn/hoi-dap/detail/99050878351.html
a: Ta có: \(n+4⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
b: Ta có: \(n^2+4⋮n+2\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow n\in\left\{0;2;6\right\}\)
1. tìm số lớn nhất có 3 chữ số mà khi chia số đó cho 65 ta được thương và số dư bằng nhau
2. tìm số tự nhiên n sao cho 4 - n chia hết cho n+1
3. tìm số tự nhiên k sao cho 7-k chia hết cho k-2
câu 1:ta có số 975 chia hết cho 65 và lớn nhất
ta có:975/65=15
lại có thương=số dư suy ra số dư =15
suy ra số cần tìm là 975+15=990
Vậy số cần tìm là 990
câu 2 =4
câu 3 = 3
tick đi mình cho lời giải chi tiết
tìm số tự nhiên n sao cho
n+4 chia hết cho n+1
n mũ 2+4 chia hết cho n+2
13n chia hết cho n-1
Để n+4 chia hết cho n+1
=>n+1/n+1+3/n+1
=>n+1 thuộc ước của 3
=> - n+1= 1 =>n=0
- n+1=-1 n=-2(loại)
- n+1=3 n=2
- n+1=-3 n=-4(loại)
Vậy n=0 và n=2
\(n+4⋮n+1\)
\(n+4=n+1+3⋮n +1\)
mà \(n+1⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
n+1 | 1 | 2 | 3 |
n | 0 | 1 | 2 |
Vậy \(n\in\left\{0;1;2\right\}\)
nếu sai thì cho mk xin lỗi
tìm các số tự nhiên n sao cho
3n+4 chia hết cho n+1
n+4 chia hết cho n+1
a) \(3n+4⋮n+1\)
\(3\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\Rightarrow n+1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{0;-2\right\}\)
Vậy ..................
b) \(n+4⋮n+1\)
\(n+1+3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(\Rightarrow n+1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;2;-2;-4\right\}\)
Vậy ................
Tìm số tự nhiên n >2 sao cho n + 4 chia hết cho n - 1
\(\Rightarrow n-1+5⋮n-1\\ \Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n=6\left(n>2\right)\)
Tìm số tự nhiên n sao cho:
n+4 chia hết cho n+1
n+6 chia hết cho n-1
\(n+4⋮n+1\)
\(\Rightarrow n+1+3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(\RightarrowƯ\left(3\right)=\left\{1;3\right\}\)
Ta có: \(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
\(\Rightarrow n\in\left\{0;2\right\}\)
\(n+6⋮n-1\)
\(\Rightarrow n-1+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\left\{1;7\right\}\)
Ta có: \(n-1=1\Rightarrow n=0\)
\(n-1=7\Rightarrow n=8\)
\(\Rightarrow n\in\left\{0;8\right\}\)
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774
tìm số tự nhiên N sao cho
N+4 chia hết cho N+1
N+5 chia hết cho N+2
2N+13 chia hết cho N+4
N+4 chia hết cho N+1
=> N + 1 + 3 chia hết cho N + 1
=> 3 chia hết cho N + 1
=> N + 1 thuộc Ư(3) = {1 ; -1 ; 3 ; -3}
Thế n + 1 vô từng ước của 3 rồi tìm x
bài b giống vậy
2N + 13 chia hết cho N + 4
=> 2N + 8 + 5 chia hết cho N + 4
=> 2 . (N + 4) + 5 chia hết cho N + 4
=> 5 chia hết cho N + 4
=> N + 4 thuộc Ư(5) = {1 ; -1 ; 5; -5}
còn lại giống bài a với b