Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Phương
Xem chi tiết
Trần Thị Diễm Quỳnh
12 tháng 10 2015 lúc 12:34

sau khi bình pương và rút gọn biểu thức trong căn ta đc:

A2=2x2+10+2.\(\sqrt{\left(x^4\right)+6x^2+25}\)

vì x4+6x2+25>=25 với mọi x

nên .\(\sqrt{\left(x^4\right)+6x^2+25}\)>=5

=>2..\(\sqrt{\left(x^4\right)+6x^2+25}\)>=10

 

=>A2>=10+10=20

=>A>=\(\sqrt{20}\)

dấu = xảy ra khi x=0

vậy..

 

Alex Queeny
12 tháng 10 2015 lúc 12:57

\(\sqrt{20}\)  khi x = 0

Nguyen Thang
Xem chi tiết
Họ Và Tên
Xem chi tiết
Họ Và Tên
Xem chi tiết
Đỗ Thảo
1 tháng 9 2021 lúc 19:20

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

nguyen ngoc son
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2021 lúc 19:49

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

Nguyễn Phương Khánh
Xem chi tiết
Phạm Thị Thùy Linh
18 tháng 6 2019 lúc 20:11

\(A=5-\sqrt{3-x^2+2x}\)

\(=5-\sqrt{-\left(x^2-2x-3\right)}\)

\(=5-\sqrt{-\left(x^2-2x+1-4\right)}\)

\(=5-\sqrt{-\left(x-1\right)^2+4}\)

\(A_{min}\Leftrightarrow\sqrt{-\left(x-1\right)^2+4}\)lớn nhất

Mà \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)

\(\Rightarrow-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)

\(\Rightarrow A=5-\sqrt{4}=5-2=3\)

Vậy \(A_{min}=3\Leftrightarrow x=1\)

Incursion_03
18 tháng 6 2019 lúc 20:11

\(ĐKXĐ:3-x^2+2x\ge0\)

Ta co \(A=5-\sqrt{3-x^2+2x}=5-\sqrt{4-\left(x-1\right)^2}\ge5-\sqrt{4}=3\)

Dau "=" tai x = 1 (Tm ĐKXĐ)

Vay...

Xem chi tiết
Nguyễn Đức Trí
18 tháng 9 2023 lúc 14:57

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

Nguyễn Thị Huyền Diệp
Xem chi tiết
Phúc Nguyễn
Xem chi tiết