Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jinnahama
Xem chi tiết
ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 14:14

\(2m^2-4m+7\)

\(=2m^2-4m+2+5\)

\(=2\left(m^2-2m+1\right)+5\)

\(=2\left(m-1\right)^2+5>=5>0\forall m\)

Do đó: Hàm số \(y=\left(2m^2-4m+7\right)x+3m^2-m-1\) luôn đồng biến trên R

nguyen thanh ngan
Xem chi tiết
hải anh thư hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 20:43

1:

a: m^2+1>=1>0 với mọi m

=>y=(m^2+1)x-5 luôn là hàm số bậc nhất

b: Do m^2+1>0 với mọi m

nên hàm số y=(m^2+1)x-5 đồng biến trên R

son goku
Xem chi tiết
Huyên Lê Thị Mỹ
Xem chi tiết
Trần Ái Linh
19 tháng 7 2021 lúc 20:22

`a=m^2+m+1=m^2+2.m. 1/2 + (1/2)^2 + 3/4= (m+1/2)^2 + 3/4 >0 forall m`

`=> a>0 =>` Hàm số luôn đồng biến trên `RR`.

Nguyễn Huy Tú
19 tháng 7 2021 lúc 20:22

Để hàm số trên đồng biến khi \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy hàm số luôn đồng biến trên R 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:24

Ta có: \(m^2+m+1\)

\(=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\)

Do đó: Hàm số \(f\left(x\right)=\left(m^2+m+1\right)x+5\) luôn đồng biến trên R

phanthithuha
Xem chi tiết

Câu a :))

Hàm số đã cho đồng biến .

giải thích :

Do \(m^2\ge0\forall m\)

\(\Rightarrow m^2+1>0\)

Vậy hàm số trên đồng biến.

Ngoc Anhh
16 tháng 1 2019 lúc 20:31

Giả sử đths đi qua điểm cố định ( x0;y0 )

Ta có y0 = ( m2 +1 )x0 - 1

  <=> y0 = m2 x0 +x0 -1

<=> y0 -x0 +1 -m2x0 = 0

Để pt nghiệm đúng với mọi m \(\Leftrightarrow\hept{\begin{cases}y_0-x_0+1=0\\x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}y_0=-1\\x_0=0\end{cases}}}\)

Vậy đths luôn đi qua điểm cố định ( 0 ; -1 )

Nameless
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 9 2019 lúc 3:08

Với mọi tham số m ta có :

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.