Cho tam giác ABC nhọn,M là 1 đ' thuộc cạnh BC.Gọi D và E lần lượt là đ' đối xứng của đ' M qua AB và AC
a)CM tam giác ADE là tam giác cân
b)DE cắt AB và AC theo thứ tự ở I và K.CM: MA là pg của EMK
c) Biết BAC=70 độ.Tính các góc tam giác ADE
1) Cho tam giác nhọn ABC, M thuộc BC. gọi D và E lần lượt là điểm đối xứng của M qua AB, AC. a) Chứng minh: tam giác ADE cân b) DE cắt AB và AC theo thứ tự tại I,K. Chứng minh: MA là tia phân giác góc IMK
Cho tam giác nhọn ABC, M thuộc BC. Gọi D,E lần lượt là điểm đối xứng của M qua AB và AC
A) Chứn minh tam giác ADE cân
b) DE cắt AB và AC thứ tự tại I và K. Chứng minh MA là đường phân giác
c) Cho biết góc BAC = 70 độ Tính góc ADE
giúp dùm em ạ
a) Gọi giao diểm của DM và AB là P, giao điểm của ME và AC là Q.
Xét tam giác ADP và AMP có:
AP chung, APD=APM=90*, DP=PM
=> tam giác ADP=tam giác AMP=>AD=AM
Tương tự, ta chúng minh được tam giác AMQ=tam giác AEQ=>AM=AE
Do AD=AM,AM=AE=> AD=AE=> tam giác ADE cân tại A.
b) Gọi giao điểm của DE và AM là F.
Ta có: AI là phân giác góc DAF=> DA/AF=DI/IF
AK là phan giác góc FAE=> AE/AF=KE/FK
mà AD=AE=>DI/IF=KE/FK=>DI/KE=IF/KF(1)
Tự chứng minh tam giác DIP=MIP=>DI=IM
tam giác KMQ=tam giác KEQ=>KM=KE
Thay điều trên vào (1)=> IM/KM=IF/IK=>AM là phân giác góc IMK.
Cho tam giác nhọn ABC, M là một điểm thuộc canh BC. Gọi D vài E lần lượt là điểm đối xứng của M qua AB, AC
a) cm tam giác ADE cân
b) DE ắt AB và AC theo thứ tự ở I và K. Cm MA là tia phân giác của góc IMK
C) biết BÂC = 70. Tính các góc của tam giác ADE
https://olm.vn/hoi-dap/question/717292.html
Ở đây nha vô xem đi
NHớ tiick cho tui
#Hok tốt
copy link rồi vào xem bn nhé
Cho tam giác ABC, có góc A bằng 70 độ, B và C là các gọc nhọn. Gọi M là 1 điểm thuộc cạnh BC. Gọi D là điểm đối xứng của M qua AB, E là điểm đối xứng của M qua AC. DE cắt AB, AC theo thứ tự tại I và K.
a)Tính các góc của tam giác ADE
b) Chứng minh MA là tia phân giác của góc IMK
1) Cho tam giác nhọn ABC, M thuộc BC. gọi D và E lần lượt là điểm đối xứng của M qua AB, AC.
a) Chứng minh: tam giác ADE cân
b) DE cắt AB và AC theo thứ tự tại I,K. Chứng minh: MA kaf tia phân giác góc IMK
c) Biết góc BAC= 70 độ. Tính các góc của tam giác ADE
2) Cho tam giác đều ABC. Trọng tâm G. Gọi M là điểm đối xứng với G qua BC. Chứng minh:
a) tam giác BGC= tam giác BMC
b) tính các góc trong tam giác BMC
Cho tam giác ABC nhọn. M là điểm bất kì trên cạnh BC. D đối xứng với M qua AB, E đối xứng với M qua AC. DE cắt AB và AC lần lượt tại I và K.
a) Chứng minh tam giác ADE cân
b) Chứng minh MA là tia phân giác của góc IMK
c) Biết góc BAC bằng 70 độ .Tính các góc của tam giác ADE
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)Cho tam giác nhọn ABC có góc A bằng 70 độ. M là 1 điểm thuộc BC. Gọi D là điểm đối xứng của M qua AB, E là điểm đối xứng của M qua AC. DE cắt AB, AC lần lượt ở I và K.
a. Tính các góc của tam giác ADE.
b. CMR: MA là tia phân giác của góc IMK.
c. Điểm M ở vị trí nào trên BC thì DE có độ dài ngắn nhất.
a.Tam giác AMD có AB vừa là đường trung tuyến vừa là đường cao
=> Tam giác AMD cân tại A
=> AB cũng đồng thời là đường phân giác của tam giác AMD
=> góc MAB = góc BAD
Tương tự ta CM được AC là đường trung tuyến của tam giác AME
=> góc CAM = góc CAE
=> \(\widehat{DAE}=\widehat{MAB}+\widehat{BAD}+\widehat{CAM}+\widehat{CAE}\)\(=2\widehat{BAC}=140\sigma\)
b.Tam giác IMD có IB vừa là đường cao vừa là đường trung tuyến
=> IB là đường phân giác của góc DIM
=> IB là đường phân giác ngoài của tam giác IMK
Tương tự ta có : IC là đường phân giác của góc MKE
=> IC là đường phân giác ngoài của tam giác IMK
Tam giác IMK có 2 đường phân giác ngoài kẻ từ I và K cắt nhau tại A
=> MA là đường phân giác trong của tam giác IMK
=> MA là đường phân giác của góc IMK
c.Tam giác ADM cân tại A => AD=AM
Tam giác AEM cân tại A => AE=AM
=> AD=AE => tam giác ADE cân tại A
Tam giác ADE cân tại A có góc ở đỉnh DAE ko đổi ( = 2* góc ABC )
=> Cạnh đáy DE có đọ dài nhỏ nhất khi cạnh bên AD có độ dài nhỏ nhất
=> AM có độ dài nhỏ nhất
=> AM là đường cao của tam giác ABC
=> M là chân đường cao kẻ từ A xuống BC
Bài 7.Cho tam giác ABC, kẻ đường cao AH, Gọi D và E theo thứ tự là các điểm đối xứng với H qua AB và AC, đường thẳng DE cắt AB, AC lần lượt tại M, N. Chứng minh:
a) tam giác DAE cân
b) HA là phân giác góc MHN
c) Ba đường thẳng BN, CM, AH thẳng hàng
d) BN, CM là các đường cao của tam giác ABC
a) Ta có: D và H đối xứng nhau qua AB(gt)
nên AB là đường trung trực của DH
hay AH=AD(1)
Ta có: H và E đối xứng nhau qua AC(gt)
nên AC là đường trung trực của EH
hay AE=AH(2)
Từ (1) và (2) suy ra AD=AE
hay ΔDAE cân tại A
Bài 7.Cho tam giác ABC, kẻ đường cao AH, Gọi D và E theo thứ tự là các điểm đối xứng
với H qua AB và AC, đường thẳng DE cắt AB, AC lần lượt tại M, N. Chứng minh:
a) tam giác DAE cân
b) HA là phân giác góc MHN
c) Ba đường thẳng BN, CM, AH thẳng hàng
d) BN, CM là các đường cao của tam giác ABC
help em ;-;
Lời giải:
a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$
$\Rightarrow AD=AH(1)$
Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$
$\Rightarrow AH=AE(2)$
Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$
b.
Vì $AB$ là trung trực $DH$ nên:
$AD=AH, MD=MH$
Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)
$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$
Tương tự: $\triangle ANH=\triangle ANE(c.c.c)
$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$
Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$
Do đó $HA$ là phân giác $\widehat{MHN}$
Làm nốt câu c,d.
c. Sửa thành $BN, CM, AH$ đồng quy
Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$
Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)
$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$
$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)
$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$
$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)
$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$
Mặt khác:
Vì $\triangle ADT\sim \triangle NHT$
$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$
Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)
$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$
Xét tam giác $RBD$ và $RNH$ có:
$\widehat{R}$ chung
$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$
$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)
$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$
$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)
$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$
Từ $(3);(4)$ suy ra:
$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$
$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$
$\Rightarrow BN\perp AC$
Tương tự $CM\perp AB$
Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)
d. Đã làm ở phần c.
P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.
Cho tam giác ABC cân (AB=AC) đg cao AH.Gọi F lần lượt là các đ' trên AB và AC sao cho BE=CF
a) CM: E đối xứng với F qua AH
b) Gọi O là giao đ' của EF và AH.Gọi tia BO và CO cắt AC và AB lần lượt ở M và K.CM: EK=MF
GIÚP MK VS MK ĐG CẦN GẤP