Cho tam giác ABC vuông tại A.Vẽ AH vuông góc với BC tại H.Tia phân giác của góc BAH cắt BH tại D.Chứng minh rằng:
a.ABH=HAC b.ADC=DAC
Cho tam giác ABC vuông tại A.Vẽ AH vuông góc với BC.Tia phân giác của góc BAH cắt BH tại D.Chứng minh rằng: góc CAD=góc CDA
Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BH ở D.Chứng minh rằng:
a) góc ABH = góc HAC
b) góc ADC = góc DAC
------
Mng giải giúp mình với nhaaa. Mình cần gấp ý <3
a)
\(\widehat{BAH}+\widehat{HAB}=90^0\)
\(\widehat{CAH}+\widehat{HAB}=90^0\)
\(\Rightarrow\widehat{CAH}=\widehat{HAB}\)
b)
\(\widehat{ADC}=\widehat{ABD}+\widehat{DAB}\)
\(\widehat{DAC}=\widehat{CAH}+\widehat{HAD}\)
Mà \(AD\) là phân giác \(\widehat{HAB}\)
\(\Rightarrow\widehat{HAD}=\widehat{DAB}\)
\(\Rightarrow\widehat{ADC}=\widehat{DAC}\)
a: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
=>góc C=góc BAH
b: góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
c: ΔCAD cân tại C có CK là phân giác
nên CK vuông góc AD
cho tam giác abc vuông tại a (ab<ac).vẽ ah vuông góc với bc tại h.
a/chứng minh tam giác HAC đồng dạng tam giác ABC
b/giả sử AB=15cm,AC=20cm.tính độ dài các cạnh AH
c/vẽ tia phân giác của góc BAH cắt cạnh BH tại D.chứng minh BD/HD=BC/AC.
giải giúp mình với ạ.
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
Bài 1:cho tam giác ABC vuông tại A vẽ AH vuông góc BC tại H.Tia phân giác của góc HAC cắt cạnh BC tại D,Elà điểm trên cạnh AB sao cho BE=BH.Chứng minh EH song song với AD
Bài 2:Cho tam giác ABC có BH vuông góc AC tại H và BH=1/2AC và góc BAC =75độ.Chứng minh tam giác ABC cân tại B
khó vãi, giải cả bủi tấu mak 0 ra , mình sr nhá
https://docs.google.com/document/d/1Wuo1vFdubrUg8F8-Ng_f-K8sda_JE_rRM704rtBrI-Q/edit?usp=sharing
Ta có H1+ H2+H3=180
E1+E2=180
mà E1=H1
nên E2=H2+H3
Tong 3 goc trong tam giác: E2+H2+A1=180
(H2+H3)+H2+A1=180
2.H2+H3+A1=180
SUY RA: H2=(180-90-A1):2 *** H3=90 hihi
=45-A1/2
mà A1=90-2A2
thay vào *** ta có H2=45-(90-2.A2)/2=A2
vậy H2=A2 hay EH//AD
Ta có H1+ H2+H3=180
E1+E2=180
mà E1=H1
nên E2=H2+H3
Tong 3 goc trong tam giác: E2+H2+A1=180
(H2+H3)+H2+A1=180
2.H2+H3+A1=180
SUY RA: H2=(180-90-A1):2 *** H3=90 hihi
=45-A1/2
mà A1=90-2A2
thay vào *** ta có H2=45-(90-2.A2)/2=A2
vậy H2=A2 hay EH//AD
Cho tam giác ABC vuông tại A vẽ AH vuông góc với BC tại H.Tia phân giác của góc HAC cắt cạnh HC tại D,E là điểm trên cạnh ABsao cho BE=BH .CMR:EH//AD
Cho tam giác ABC vuông tại A vẽ AH vuông góc với BC tại H.Tia phân giác của góc HAC cắt cạnh HC tại D,E là điểm trên cạnh ABsao cho BE=BH .CMR:EH//AD
cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BH tại D. CMR: góc ADC= góc DAC
\(\widehat{DAC}+\widehat{DAB}=90^0\)
\(\widehat{ADC}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{ADC}=\widehat{DAC}\)
Bài 4. Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BH ở D. Chứng minh rằng:
a) góc ABH = góc HAC
b) góc ADC = góc DAC