Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thảo
Xem chi tiết
Thắng Nguyễn
13 tháng 4 2016 lúc 22:22

a)A=( x - 1 )+ 2008

ta thấy:(x-1)2\(\ge\)0

=>(x-1)2+2008\(\ge\)0+2008

=>A\(\ge\)2008

vậy Amin=2008 khi x=1

b)B = | x + 4 | + 1996

=>|x+4|\(\ge\)0

=>|x+4|+1996\(\ge\)0+1996

=>B\(\ge\)1996

c)để C đạt GTNN=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,2,-3,7}

mà C đạt GTNN =>x=-3

d)để D đạt GTNN=>x+5 chia hết x-4

<=>(x-4)+9 chia hết x-4

=>9 chia hết x-4

=>x-4\(\in\){1,-1,3,-3,-9,9}

=>x\(\in\){5,3,7,1,13,-5}

mà D đạt GTNN

=>x=1

mà D đạt GTNN =>x=-3

Thắng Nguyễn
13 tháng 4 2016 lúc 22:15

y hệt bài ở đề cương của tui
 

Nguyễn Linh Nhi
Xem chi tiết
Phan Mạnh Quân
Xem chi tiết
Minh Hiền
30 tháng 7 2015 lúc 9:17

A=(x-1)2+2008

\(\text{vì }\left(x-1\right)^2\ge0\) nên A đạt GTNN là 2008

<=> x-1=0

=> x=0+1

=> x=1

Nguyễn Phúc Đăng Sơn
31 tháng 5 2020 lúc 21:17

1+1 bằng mấy

Khách vãng lai đã xóa
Nguyễn Quỳnh Hương
10 tháng 6 2020 lúc 12:41

A=(x-1)^2+2008

Vì (x-1)^2 ≥ nên A đạt GTNN là 2008

<=>x-1=0

=>x=0+1

=>x=1

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
vũ tiền châu
12 tháng 6 2018 lúc 8:16

Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)

Dấu = xảy ra <=> x=3

c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)

Dấu = xảy ra <=> \(2\le x\le3\)

^_^

Trần Minh Hoàng
12 tháng 6 2018 lúc 9:02

b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)

\(\Rightarrow B\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)

Kim An
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 16:38

\(\left|x-5\right|+\left|x-7\right|\\ =\left|5-x\right|+\left|x-7\right|\\ \ge\left|5-x+x-7\right|\\ =\left|-2\right|\\ =2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(5-x\right)\left(x-7\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x\ge0\\x-7\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x\le0\\x-7\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le5\\x\ge7\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge5\\x\le7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow5\le x\le7\)

Vậy \(5\le x\le7\) thì \(\left|x-5\right|+\left|x-7\right|\) đạt GTNN

Nguyễn khang hưng
Xem chi tiết
Châu Anh Đăng
Xem chi tiết
Pé Jin
30 tháng 5 2016 lúc 13:40

\(A=\left(x-1\right)^2+2016\)

Vì \(\left(x-1\right)^2\ge0\)

\(=>GTNN\left[\left(x-1\right)^2\right]=0\)

Vậy \(A_{min}=0+2016=2016\)

Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(B=Ix+10I+2016\)

Vì \(Ix+10I\ge0\)

Nên \(GTNN\left(Ix+10I\right)=0\)

Vậy \(B_{min}=0+2016=2016\)

Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\) 

\(x+10=0\Rightarrow x=-10\)

\(C=\frac{5}{x-2}\)

Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ

Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)

Mà \(\left(-5\right)< 5\)

=> \(GTNN\left(x-2\right)=-5\)

\(\Rightarrow x=\left(-5\right)+2=-3\)

Nguyễn Lan Phương
Xem chi tiết
vua sút thẳng
Xem chi tiết
Phan Nghĩa
23 tháng 7 2020 lúc 19:58

\(B=\frac{1}{2\left(x-1\right)^2}+3\)[ĐKXĐ:2(x-1)^2>0]

Để B đạt GTLN thì 2(x-1)^2 đạt GTNN 

\(Tacó:2\left(x-1\right)^2\ge0\)do đk nên \(2\left(x-1\right)^2\ge1\)

Đẳng thức xảy ra :\(< =>\left(x-1\right)^2=\frac{1}{2}< =>x^2-x+\frac{1}{2}=0\)

Do PT trên vô nghiệm nên B không thể có GTLN

Khách vãng lai đã xóa
vua sút thẳng
23 tháng 7 2020 lúc 20:00

này bạn hiểu lộn rồi

2 { x - 1 } 2 + 3 là mẫu số

Khách vãng lai đã xóa
Phan Nghĩa
23 tháng 7 2020 lúc 20:04

Để B đạt GTLN thì 2(x-1)^2 + 3 đạt GTNN

Ta có : \(2\left(x-1\right)^2+3\ge3\)

Đẳng thức xảy ra khi \(x=1\)

Vậy MaxB = 1/3 khi x=1

bạn có thể viết lại đề câu b không ?

Khách vãng lai đã xóa