Tìm giá trị nhỏ nhất của biểu thức :
\(A=x^2+5y^2+4xy+2x+12\)
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
tìm giá trị nhỏ nhất của biểu thức B=x^2+5y^2-4xy-4yz-4z+12
Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?
Tìm giá trị nhỏ nhất của biểu thức M = x^2+5y^2-4xy+2x-8y+2021
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức A, biết:
A= x2+5y2-4xy-2y+2x+2010
Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)
Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)
do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)
Dấu "=" xảy ra khi x-2y+1=0 và y+1=0
ta có:
y+1=0=>y=0-1=>y=-1
thay y=-1 và x-2y+1=0
=>x-2.(-1)+1=0
=>x+2+1=0
=>x+2=-1
=>x=-1-2
=>x=-3
vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1
Tìm giá trị nhỏ nhất của biểu thức
a) \(Q=\frac{x+16}{\sqrt{x}+3}\)
b) \(M=x^2+5y^2+4xy+2x+12\)
a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)
Dấu = xảy ra <=> x=4
b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)
=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)
dấu = xảy ra <=> y=1 và x=-3
^_^
giúp mình với mọi người ơi mình đang cần bài này gấp lắm
bn kiểm tra lại đề bài đi mk thấy sai sai
Tìm giá trị nhỏ nhất của biểu thức sau:
x^2 + 5y^2 + 2x - 4xy. - 10y + 14
Tính giá trị nhỏ nhất của biểu thức: A= \(2x^2+5y^2+4xy-8x+4y+2020\)
\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)
\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)
Dấu ''='' xảy ra khi x = 4 ; y = -2
tìm giá trị nhỏ nhất của biểu thức x^2-4xy+5y^2-2y+28
đặt biểu thức là A. Ta có:
A=x2 - 4xy + 5y2 - 2y + 28
= (x2-4xy+4y2) + (y2-2y +1)+27
=(x-2y)2 + (y-1)2 + 27
vì (x-2y)2 ≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27
⇔\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\) ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)
Vậy, Min A=27 khi x=2; y=1