Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trinh thi thanh xuan
Xem chi tiết
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
4 tháng 4 2020 lúc 21:14

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)

\(2S-S=\left(2+2^3+..+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)

\(S=2^{201}-1\)

Khách vãng lai đã xóa
Hiền Thương
10 tháng 11 2020 lúc 6:18

Ta có 

S = 1 + 2 + 22 + 23 + ....+ 2100

2S = 2 + 22 + 23 + 24 + . ....+ 2101

2S-S = ( 2 + 22 + 23 + 24 + . ....+ 2101) - ( 1 + 2 + 22 + 23 + ....+ 2100)

S = 2 + 22 + 23 + 24 + . ....+ 2101  - 1 -2 - 22  - 23 -....-  2100

S = 2101 - 1 

Khách vãng lai đã xóa
Doraemon
Xem chi tiết

S=1+2+22+23+...+220

2S=2+22+23+24+...+221  

=>S=2S-S=221-1C

Vậy S=221-1

X1
21 tháng 1 2019 lúc 15:37

\(S=1+2+2^2+2^3+...+2^{20}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{21}\)

\(\Rightarrow2S-S=\left(2+2^2+...+2^{21}\right)-\left(1+2+...+2^{20}\right)\)

\(\Rightarrow S=2^{21}-1\)

Lê Hữu Thành
10 tháng 5 2019 lúc 17:23

S=1+2+2^2+....+2^20

=>2S=2+2^2+2^3+...+2^21

=>2S-S=2^21-1

=>S=2^21-1

Nguyễn Hà Nhật Minh
Xem chi tiết
thanlinhtinh
8 tháng 1 2018 lúc 18:34

lam luon nha

=>S.2=2+2^2+2^3+....+2^2018

=>S.2-S=S=(2+2^2+2^3+...+2^2018)-(1+2+2^2+2^3+...2^2017)

=>S=2^2018-1

laala manaka
Xem chi tiết
Đỗ Trung Quân
1 tháng 11 2021 lúc 21:50

2x+2x+1+2x+2+2x+3-480=0

2x+2x​.2+2x.22+2x​.23=0+480

2x.(1+2+22+23)=480

2x.(1+2+4+8)=480

 2x.15=480

2x=480:15

2x=32=25

Vậy x =5

nếu sai thì thông cảm nha

Khách vãng lai đã xóa
laala manaka
1 tháng 11 2021 lúc 21:43

các anh chị ơi giúp em với ạ

em đang cần gấp

Khách vãng lai đã xóa
Danh Phan Sỹ
Xem chi tiết
Fire Sky
3 tháng 1 2019 lúc 19:38

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3+2^2.3+...+2^{2020}.3⋮3\)

     VẬY \(S⋮3\)

Trả lời :...........................................

SCSH: (2021 - 1) : 1 = 2020

Tổng: (2021 + 1) : 2 = 1011

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

Kiệt Nguyễn
3 tháng 1 2019 lúc 19:42

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(\text{Số số hạng của S là 2022 số , chia làm 1011 cặp , mỗi cặp 2 số .}\)

\(\Leftrightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(\Leftrightarrow S=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(\Leftrightarrow S=3+2^2\times3+...+2^{2020}\times3\)

\(\Leftrightarrow S=3\left(1+2^2+...+2^{2020}\right)\)

\(\Rightarrow S⋮3\left(đpcm\right)\)

Nguyễn Văn Tiến
Xem chi tiết
phamthithuthao
Xem chi tiết
Nguyễn Tuấn Minh
19 tháng 8 2016 lúc 15:12

\(S=\frac{3}{2^0}+\frac{3}{2^1}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+\frac{3}{2^0}+\frac{3}{2^1}+...+\frac{3}{2^8}\)

2S-S=6-\(\frac{3}{2^9}\)

S=\(5\frac{509}{512}\)

phamthithuthao
19 tháng 8 2016 lúc 16:28

CẢM ƠN BẠN

Đào Ngọc thuận
Xem chi tiết
Đào Ngọc thuận
21 tháng 2 2020 lúc 21:03

có ai ko

Khách vãng lai đã xóa
Đào Ngọc thuận
21 tháng 2 2020 lúc 21:48

giúp mk vs

Khách vãng lai đã xóa
Nguyễn Thị Thùy Trâm
21 tháng 2 2020 lúc 21:54

Gọi \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) + ... + \(\frac{1}{2^n}\) là A

Ta có :

\(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)

\(\frac{1}{2^3}\)<\(\frac{1}{2.3}\)

\(\frac{1}{2^4}\)<\(\frac{1}{3.4}\)

....

\(\frac{1}{2^n}\)<\(\frac{1}{\text{(n - 1) . n}}\)

❄ Nên :

A < \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{\text{(n - 1) . n}}\)

A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

A < \(1-\frac{1}{n}\) < 1

Vậy A < 1

\(\frac{1}{2^2}\)\(\frac{1}{2^2}\)

Khách vãng lai đã xóa
nguyễn minh phương
Xem chi tiết
perfect shadow
14 tháng 9 2017 lúc 16:17

S = 2^0 + 2^2 + 2^4 +...+ 2^100

4S = 2^2 + 2^4 + 2^6 + ... + 2^100 + 2^102

4S - S = 2^2 + 2^4 + 2^6 + ... + 2^100 + 2^102 - ( 2^0 + 2^2 + 2^4 +...+ 2^100 )

3S = 2^102 - 1

S = ( 2^102 - 1 ) / 3