Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lisaki Nene
Xem chi tiết
Phương Trình Hai Ẩn
8 tháng 7 2018 lúc 15:30

1. Chứng minh rằng: 3^2+3^3+3^4+...+3^101 chia hết cho 120.

Ta có:

A=3^2+3^3+3^4+...+3^101 

= (3^2+3^3+3^4+3^5) + ( 3^6+3^7+3^8+3^9) +.... + ( 3^98 + 3^99 + 3^100 + 3^101)

= 3.(3+3^2+3^3+3^4) + 3^5.(3+3^2+3^3+3^4) +....+ 3^97.(3+3^2+3^3+3^4)

= 120.(3+3^5+...+3^97) chia hết cho 120

 (đ.p.c.m)

:) câu 2 em chịu

Nguyệt
8 tháng 7 2018 lúc 15:32

=(3^2+3^3+3^4+3^5)+......+(3^98+3^99+3^100+3^101)

=3.(3+3^2+3^3+3^4)+.....+3^97.(3+3^2+..+3^4)

=3.120+.......+3^97.120

=120.(3+...+3^97) chia hết cho 120

Gokuto
Xem chi tiết
nguyễn hoàng giáp
2 tháng 4 2016 lúc 10:08

2011 du 4 va 6

Nguyễn Ngọc Diệp
Xem chi tiết
Phạm Thành Đạt
1 tháng 12 2021 lúc 21:20

vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1

Khách vãng lai đã xóa
Hưng Emperor
Xem chi tiết
fsđsf
Xem chi tiết
Transformers
29 tháng 11 2015 lúc 10:16

cho1 tick rồi mình giải chi tiết cho, ha

nguyễn ngọc thư
Xem chi tiết
Bạn Thân Yêu
Xem chi tiết
Hoàng Trung Kiên
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Phạm Hải Băng
27 tháng 3 2017 lúc 21:02

vào 1 trong 2 link này :

https://olm.vn/hoi-dap/question/366868.html

https://olm.vn/hoi-dap/question/402423.html