Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thùy Dương
Xem chi tiết
Nguyễn Đình Dũng
22 tháng 10 2016 lúc 7:10

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

Phạm Nguyễn Tất Đạt
22 tháng 10 2016 lúc 7:43

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Phạm Nguyễn Tất Đạt
22 tháng 10 2016 lúc 7:47

b)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Ngô Thị Ngọc Hân
Xem chi tiết
Neet
18 tháng 12 2016 lúc 11:08

BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(2a^2-4ab+2b^2\ge0\)

\(2\left(a-b\right)^2\ge0\)(luôn đúng)

Giải ;

ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)

\(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)

cộng vế vs vế ta có:

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)

từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)

\(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)

dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1

 

Phúc Long Nguyễn
Xem chi tiết
where are you now
15 tháng 4 2017 lúc 12:41

bài này mình chịu

mình mới lớp 5

kudo shinichi
15 tháng 4 2017 lúc 12:50

mình cũng thế 

tại sao bạn ko nghĩ

Phương Phươngg
15 tháng 4 2017 lúc 12:52

e mứi có lp 7 ak

e k giúp đc rùi >.<

Dũng Senpai
Xem chi tiết
Trần Phúc Khang
2 tháng 8 2019 lúc 15:44

Áp dụng BĐT bunniacoxki ta có:

\(\left(b^2+\left(c+a\right)^2\right)\left(1+4\right)\ge\left(b+2\left(a+c\right)\right)^2\)

=> \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)

=> \(VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)

Cần CM \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)

<=>\(\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)

<=>\(\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)

Áp dụng bđt buniacoxki dạng phân thức ở vế trái:

=> \(VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)

         \(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+c\right)^2}=\frac{9}{5}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

Tiểu Thư Hiền Hòa
Xem chi tiết
Vĩnh Thụy
14 tháng 8 2016 lúc 16:12

Bài 2: Mình nghĩ câu a là a+2b-3c=-20

a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5

a/2 = 5 => a = 2 . 5 = 10

b/3 = 5 => b = 5 . 3 = 15

c/4 = 5 => c = 5 . 4 = 20

Vậy a = 10; b = 15; c = 20

b) Ta có: a/2 = b/3 => a/10 = b/15

              b/5 = c/4 => b/15 = c/12

=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7

a/10 = -7 => a = -7 . 10 = -70

b/15 = -7 => b = -7 . 15 = -105

c/12 = -7 => c = -7 . 12 = -84

Vậy a = -70; b = -105; c = -84.

Janku2of
14 tháng 8 2016 lúc 15:57

bài 1

a:b:c:d=2:3:4:5=

Vĩnh Thụy
14 tháng 8 2016 lúc 15:58

Bài 1:

Ta có: a:b:c:d = 2:3:4:5

=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3

a/2 = -3 => a = -3 . 2 = -6

b/3 = -3 => b = -3 . 3 = -9

c/4 = -3 => c = -3 . 4 = -12

d/5 = -3 => d = -3 . 5 = -15

Vậy a = -6; b = -9; c = -12; d = -15.

Nguyễn Minh Tuyền
Xem chi tiết
anhduc1501
10 tháng 5 2017 lúc 22:45

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=2\frac{a}{c}\\ \frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\\ \frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

\(=>2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)\)

=> đpcm

nguyễn vũ kim anh
Xem chi tiết
T.Ps
8 tháng 7 2019 lúc 21:00

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

Edogawa Conan
8 tháng 7 2019 lúc 21:01

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

Tiểu _ Vy _ Fa
8 tháng 7 2019 lúc 21:01

vội ???? chưa lm bài hay sao vậy tòi

Phong Tinh Tuyết
Xem chi tiết
gasuyfg
Xem chi tiết