Tính A = 3/1x3+3/3x5+...+3/2003x2005
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
b. 3/1x4 + 3/2x5 + 3/3x6 + 3/4x7 + 1/5x8
c. 2/1x3 + 2/3x5 + 2/5x7 + ............... + 2/2001x2003 + 2/2003x2005
Các bn vui lòng giải lời giải nha
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?
b, 3/1x4 + 3/2x5 + 3/3x6 + 3/4x7 + 1/5x8
= 3/4 + 3/10 + 3/18 + 3/28 + 1/40
= 1133/840
c,2/1x3 + 2/3x5 + 2/5x7+..+ 2/2001x2003 + 2/2003x2005
= ( 1 - 1/3) + ( 1/3 - 1/5) + ( 1/5 - 1/7) +...+ ( 1/2001 - 1/2003) + (1/2003 - 1/2005)
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/2001 - 1/2003 + 1/2003 - 1/2005
= 1 - 1/2005
= 2004/2005
So sánh A và B
A= 2/1x3 + 2/3x5 + 2/5x7 +....+ 2/2003x2005
B=2006/2005
Nhanh mk tk nha
A= 2/1x3 + 2/3x5 + 2/5x7 +... + 2/2003x2005
A= 1 - 1/3 +1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2003 + 1/2005
A= 1 - 1/2005
A= 2004/2005
B= 2006/2005
suy ra A < B
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}=\frac{2004}{2005}\)
\(\Rightarrow A=\frac{2004}{2005},B=\frac{2006}{2005}\)
\(\Rightarrow A< B\)
Tính nhanh: 3/1x3+3/3x5+3/5x7+...+3/49x51
\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
Tính giá trị của biểu thức:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+.......+\frac{2}{2003x2005}\)
\(x\) là nhân nhé.
Theo cách mk học sẽ suy ra lun
=1/1-1/3+1/3-1/5+1/5-1/7+...+1/2001-1/2003+1/2003-1/2005
=1-1/2005
=2004/2005
Tính tổng :
3/1x3+3/3x5+3/5x7+.........+3/49x51
Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)
\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)
a)2/1x3+2/3x5+2/5x7+...+2/37x99
b)3/1x4+3/+3/4x7+...+3/97x100
c)1x3+3x5+...+47x49
d)1x2x3+2x3x4+...+18x19x20
2)Không tính cụ thể hãy so sánh
a)2013x2017và2015x2015
b)2013x2017và2014x2016
Em cần giải gấp các anh chị giúp em nha
tính
3/1x3 + 3/3x5 + 3/5x7 +............+3/99x101=..........................................
Đặt \(S=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\Rightarrow S=\frac{2}{2}.\left(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{3}{99.101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(1-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\frac{100}{101}\)
\(\Rightarrow S=\frac{150}{101}\)
a)1/1x3+1/3x5+1/5x7+...+1/Xx(x+3)=99/200
b)1/1x3+1/3x5+1/5x7+...+1/Xx(x+2)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
Công thức: \(\dfrac{1}{a\times b}=\) 1/ khoảng cách giữa a và b \(\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
* Bạn làm theo công thức và vẫn dụng câu b nhé.
Tính nhanh :
3 / 1x3 + 3 / 3x5 + 3 / 5x7 +.............+ 3 / 2017x2019
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)
\(\frac{3}{1\times3}+\frac{3}{3\times5}+.......+\frac{3}{2017\times2019}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+......+\frac{2}{2017\times2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\frac{2018}{2019}\)
\(=\frac{1009}{673}\)