đa thức f(x) = x^3 -ax^2 - 9x +b
tìm a và b để đt có 2 nghiệm là 1 và 3
cho f(x)=x^3-ax^2-9x+b. Tìm a và b để đa thức có 2 nghiệm 1 và 3
Ta có: \(f\left(1\right)=1^3-a.1^2-9.1+b\)
\(=1-a-9+b\)
\(=-8-a+b\)
Mà \(f\left(1\right)=0\Rightarrow-8-a+b=0\left(1\right)\)
Ta có: \(f\left(3\right)=3^3-a.3^2-9.3+b\)
\(=27-9a-27+b\)
\(=-9a+b\)
Mà \(f\left(3\right)=0\Rightarrow-9a+b=0\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\)ta được :
\(\left(-8-a+b\right)-\left(-9a+b\right)=0\)
\(-8-a+b+9a-b=0\)
\(-8+8a=0\)
\(8a=8\)
\(a=1\)
Thay a =1 vào (1) ta được b= 9
Vậy a=1 và b=9
f(1) = 0 <=> 1^3 - a.1^2 - 9.1 + b = 0 <=> - a + b - 8 = 0 (1)
f(3) = 0 <=> 3^3 - a. 3^2 - 9.3 + b = 0 <=> - 9a + b = 0 (2)
(2) => b = 9a
Thay vào (1): - a + 9a - 8 = 0 => 8a - 8 = 0 => a = 1
=> b = 9a = 9
Xác định hệ số a,b để đa thức:
a) f(x) = x^3 - ax^2 - 9x + b có hai nghiệm là 1 và 3
b) g(x) = (2a + 3).x^2 - 5x + b có hai nghiệm là x = 2 và x =
c) h(x) = ax^3 + 6x^2 + bx + 6 có hai nghiệm là x = -2 và x = -3
cho f(x)=x^3-ax^2-9x+b.
Tìm a và b để đa thức có 2 nghiệm 1 và 3
với 2 giá trị a và b tìm được ở câu trên , tìm nghiệm còn lại của đa thức
Cho f(x)=x^3-ax^2-9x+b.
a) Tìm a và b để đa thức có 2 nghiệm 1 và 3
b) Với 2 giá trị a và b tìm được ở câu trên , tìm nghiệm còn lại của đa thức
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
a) Tìm số a để đa thức ax - 1/2 có nghiệm là x = 1/3
b) Xác định hệ số a,b của đa thức f (x) = ax + b biết f (1) = (-3) và f (2) = 7
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
a)xác định a để nghiệm của đa thức f x = ax - 4 Cũng là nghiệm của đa thức g(x) = x^2 trừ x = 2 .
b)cho f(x) = ax^3 = bx^2 = cx = d trong đó A,B,C,D là hàm số và thỏa mãn b + 3 a + c. chứng tỏ rằng F(1) = F (-2)