Chứng tỏ rằng hai số a+1 và 3a+4 ( a thuộc N) là hai số nguyên tố cùng nhau
Chứng tỏ rằng 2 số a+1 và 3a+4 (a thuộc N) là 2 số nguyên tố cùng nhau.
Gọi d là ƯCLN của a+1 và 3a+4
=>a+1 và 3a+4 chia hết cho d
=>(3a+4)-3(a+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(a+1,3a+4)=1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi UCLN (a+1;3a+4)=d
=>a+1:d; 3a+4:d=>(3a+4)-(a+1):d
=>(3a+4)-3(a+1):d=>3a+4-3a-3:d=>1:d=>d =1 hoặc d = -1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
phân tích, ta có: 3a+4=(3a+3)+1=3(a+1)+1(*)
ta thấy 3(a+1)là bội của a+1 và nguyên tố cùng nhau như (*) nên a+1 và 3a+4 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
gọi UCLN(n+1;3n+4) là d
=>3n+4 chia hết cho d
=> n+1 chia hết cho d
=>3(n+1) chia hết cho d
=>3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1 và 3n+4 nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Gọi d là ước chung cua n+1 và 3n+4
Ta có n+1 :d và 3n +4:d
Suy ra (3n+4)-(3n+3):d suy ra1:d suy ra d=1
Vậy n+`1 và 3n+4 la hai số nguyên tố cùng nhau
chứng tỏ rằng
a,hai số tự nhiên liên tiếp n và n-1 ( n thuộc n* ) là hai số nguyên tố cùng nhau .
b, 2n+1 và 14n+6 (n thuộc n* ) là hai số nguyên tố cùng nhau .
a) Đặt UCLN ( n ; n - 1 ) = d
=> n chia hết cho d ; n - 1 chia hết cho d
=> n - ( n - 1 ) chia hết cho d
=> n - n + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n và n - 1 là 2 số nguyên tố cùng nhau
b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d
=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d
=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d
=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d
=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d
=> 14n + 7 - 14n - 6 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng hai số n+1 và 3n+4(n thuộc N)là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN(n + 1 ; 3n + 4)
Vì n + 1 chia hết cho d nên (n + 1) * 3 = 3n + 3 chia hết cho d
Mà 3n + 4 cũng chia hết cho d
=> (3n + 4 - 3n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vì ƯCLN(n + 1 ; 3n + 4) = d = 1 nên n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau
chứng tỏ rằng hai số n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau
gọi d là ƯC (n+1;3n+4)
ta có n+1 chia hết cho d=>3(n+1) chia hết cho d=>3n+3 chia hết cho d
mà 3n+4 cũng chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=> 1 chai hết cho d
vậy d=1
=>ƯC(n+1;3n+4)=1
vậy ... nguyên tố cùng nhau
=>dpcm
chứng tỏ rằng hai số n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau.
Đặt UCLN(n + 1 ; 3n +4) = d
n + 1 chia hết cho d
< = > 3n + 3 chia hết cho d
< = > [(3n + 4)-(3n+3)] chia hết cho d
< = > (3n + 4 - 3n -3 ) chia hết cho d
1 chia hết cho d => d= 1
Vậy n + 1 ; 3n +4 là 2 số nguyên tố cùng nhau
Gọi UCLN(n + 1; 3n + 4) là d
=> n + 1 chia hết cho d => 3(n + 1) chia hết cho d
3n + 4 chia hết cho d
Từ 2 điều trên => (3n + 4) - 3(n + 1) chia hết cho d
=> 3n + 4 - 3n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(n + 1; 3n + 4) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Chứng tỏ rằng
a,Hai số tự nhiên liên tiếp n và n-1 (n thuộc n*) là số nguyên tố cùng nhau
b,2n +1 và 14n +6 ( n thuộc n* ) là hai số nguyên tố cung nhau
Gọi:
d=UCLN(n,n-1)
Ta có: n chia hết cho d
n-1 chia hết cho d
=> n-(n-1) chia hết cho d
=> 1 chia hết cho d=> d=1
Vậy: n và n-1 ntcn
b) gọi như vậy ta có:
7(2n+1)-14n+6 chia hết cho d
=> 1 chia hết cho d=>d=1
Vậy 2n+1 và 14n+6 ntcn
Chứng tỏ rằng n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(n+1;3n+4\right)\)
Ta có:
\(n+1⋮d\Rightarrow3n+3⋮d\)
\(3n+4⋮d\)
\(\Rightarrow3n+4-3n+3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=UCLN\left(n+1;3n+4\right)=1\)
\(\Rightarrow n+1\) và 3n + 4 là 2 số nguyên tố cùng nhau
Vậy...
CMR: n+1 & 3n+4 là 2 số nguyên tố cùng nhau
G/s: ƯCLN(n+1;3n+4) = d
Ta có:
n+1 =>3.(n+1) =>3n+3
3n+4=>1.(3n+4)=>3n+4
=> (3n+4) - (3n+3) \(⋮\) d
=> 3n+4 - 3n-3 \(⋮\) d
=> 1 \(⋮\) d => d \(\in\) ƯC(1) = \(\left\{1\right\}\)
KL: Vậy n+1 & 3n+4 là 2 số nguyên tố cùng nhau