1.Tính lũy thừa sau
\(a.\frac{15^5.10^5}{6^6.25^6}\)
\(b.\frac{\left(5^4-5^3\right)^3}{125^4}\)
\(\frac{15^5.10^5}{6^6.25^6}\)
2.\(\frac{\left(5^4.5^3\right)^3}{125^4}\)
\(\frac{15^5.10^5}{6^6.25^6}\)
\(=\frac{3^5.5^5.2^5.5^5}{3^6.2^6.5^{12}}\)
\(=\frac{3^5.2^5.5^{10}}{3^6.2^6.5^{12}}\)
\(=\frac{1}{3.2.5^2}\)
\(\frac{\left(5^4.5^3\right)^3}{125^4}\)
\(=\frac{\left(5^7\right)^3}{5^{12}}\)
\(=\frac{5^{21}}{5^{12}}\)
\(=5^9\)
Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa của a:
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) với \(a = - \frac{1}{6}\).
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) với \(a = - 0,2\).
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) (với \(a = - \frac{1}{6}\))
\(=(- \frac{1}{6})^{3. 4}=(- \frac{1}{6})^{12}\)
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) (với \(a = - 0,2\))
\(=(-0,2)^{4.5}=(-0,2)^{20}\)
Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ :
1)\(\frac{8^{11}.3^{17}}{27^{10}.9^{15}}\)
2)\(\frac{\left(5^4-5^3\right)^3}{125^4}\)
3)\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{8^{11}.3^{17}}{27^{10}.9^{15}}=\frac{8^{11}.3^{17}}{3^{30}.3^{30}}=\frac{8^{11}}{3^{13}.3^{30}}=\frac{8^{11}}{3^{43}}\)
\(\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{[\left(5-1\right).5^3]^3}{5^{12}}=\frac{\left(4.5^3\right)^3}{5^{12}}=\frac{64.5^9}{5^{12}}=\frac{64}{5^3}=\left(\frac{4}{5}\right)^3\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{40}-2^{20}+6^{20}}{6^{20}-3^{20}+3^{40}}=\frac{2^{20}.\left(2^{20}-1+3^{30}\right)}{3^{20}.\left(2^{20}-2+3^{20}\right)}=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}\)
B1: Tính
a) (1/4)44. (1/2)12
b) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}
\)
c)\(\frac{14^{16}.21^{32}.35^{48}}{10^{16}.15^{32}.7^{96}}\)
d)\(\frac{\left(5^4-5^3\right)^3}{125^4}\)
e)\(\frac{10^3+5.10^2+5^3}{6^3+3.6^2+3^3}\)
cho f(x)=\(\frac{2}{3}.X^4-\frac{3}{4}.X.\left(X+6\right)-\frac{1}{3}.X^3+X-\frac{2}{5}\)
g(x)=\(\frac{1}{5}.x.\left(x-5\right)-3.x^4+2\)
a) thu gọn các đa thức
b) tính f(x)-g(x) sau khi sắp xếp chúng theo lũy thừa tăng của biến
Tính giá trị của các biểu thức sau rồi phân tích kết quả ra thừa số nguyên tố:
a. \(160 - \left( {{2^3}{{.5}^2} - 6.25} \right)\);
b. \(37.3 + 225:{15^2}\)
c. \(5871:103 - 64:{2^5}\)
d. \(\left( {1 + 2 + 3 + 4 + 5 + 6 + 7 + 8} \right){.5^2} - 850:2\)
a. \(160 - \left( {{2^3}{{.5}^2} - 6.25} \right)\)
\(\begin{array}{l} = 160 - \left( {8.25 - 6.25} \right)\\ = 160 - 25.\left( {8 - 6} \right)\\ = 160 - 25.2\\ = 160 - 50\\ = 110\end{array}\)
Ta có: 110 = 2.5.11
b. \(37.3 + 225:{15^2}\)
\(\begin{array}{l} = 37.3 + 225:225\\ = 37.3 + 1\\ = 111 + 1\\ = 112\end{array}\)
Ta có: \(112 = 2^4.7\)
c. \(5871:103 - 64:{2^5}\)
\(\begin{array}{l} = 5871:103 - 64:32\\ = 57 - 2 = 55\end{array}\)
Ta có: 55 = 5. 11
d. \(\left( {1 + 2 + 3 + 4 + 5 + 6 + 7 + 8} \right){.5^2} - 850:2\)
\(\begin{array}{l} = \left[ {\left( {1 + 8} \right) + \left( {2 + 7} \right) + \left( {3 + 6} \right) + \left( {4 + 5} \right)} \right]{.5^2} - 850:2\\ = \left( {9 + 9 + 9 + 9} \right){.5^2} - 850:2\\ = {9.4.5^2} - 850:2\\ = {36.5^2} - 425\\ = {36.5^2} - {5^2}.17\\ = {5^2}.\left( {36 - 17} \right)\\ = {5^2}.19=475\end{array}\)
Ta có: \(475 = 5^2.19\)
a: \(160-\left(2^3\cdot5^2-6\cdot25\right)\)
\(=160-\left(8\cdot25-150\right)\)
\(=160-200+150=10=2\cdot5\)
b: \(=111+225:225=112=2^4\cdot7\)
c: \(=57-64:32=57-2=55=5\cdot11\)
d: \(=\left(9\cdot\dfrac{8}{2}\right)\cdot25-425=36\cdot25-425=25=5^2\)
BÀi 1: Thực hiện phép tính ( tính nhanh nếu có thể)
a.\(\left(-\frac{1}{2}\right)-\left(-\frac{3}{5}\right)+\left(-\frac{1}{9}\right)+\frac{1}{71}-\left(-\frac{2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
b.\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
c.\(\frac{3}{5}:\left(\frac{-1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(\frac{1}{3}-1\frac{1}{15}\right)\)
Viết các biểu thứ dưới dạng lũy thừa của một số nguyên:
a)\(12^3.\left(3^{-4}.64\right)\).
b)\(\left(\frac{3}{7}\right)^5.\left(\frac{7}{3}\right)^{-1}.\left(\frac{5}{3}\right)^6:\left(\frac{343}{625}\right)^2\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a)\(12^3.3^{-4}.64\)
\(=3^3.2^6.3^{-3}.2^6=2^{12}\)
b) \(\left(\frac{3}{7}\right)^5.\left(\frac{7}{3}\right)^{-1}.\left(\frac{5}{3}\right)^6:\left(\frac{343}{625}\right)^2\)
\(=\frac{3^5.7^{-1}}{7^5.3^{-1}}.\left(\frac{5}{3}\right)^6:\frac{7^6}{5^8}\)
\(=\frac{3^6}{7^6.}.\frac{5^6}{3^6}.\frac{5^8}{7^6}\)
\(=\frac{5^{14}}{7^{12}}\)
Tính giá trị các biểu thức sau theo hai cách (có cách dùng tính chất phép cộng):
a) \(\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5}\)
b) \(\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right)\).
a) Cách 1:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \frac{2}{5} + \frac{5}{6} + \frac{4}{5}\\ = \frac{{12}}{{30}} + \frac{{25}}{{30}} + \frac{{24}}{{30}} = \frac{{61}}{{30}}\end{array}\)
Cách 2:
\(\begin{array}{l}\left( {\frac{{ - 2}}{{ - 5}} + \frac{{ - 5}}{{ - 6}}} \right) + \frac{4}{5} = \left( {\frac{2}{5} + \frac{4}{5}} \right) + \frac{5}{6}\\ = \frac{6}{5} + \frac{5}{6} = \frac{{36}}{{30}} + \frac{{25}}{{30}} = \frac{{61}}{{30}}\end{array}\)
b) Cách 1:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \frac{{45}}{{60}} + \frac{{ - 44}}{{60}} + \frac{{ - 30}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\).
Cách 2:
\(\begin{array}{l}\frac{{ - 3}}{{ - 4}} + \left( {\frac{{11}}{{ - 15}} + \frac{{ - 1}}{2}} \right) = \frac{3}{4} + \frac{{ - 11}}{{15}} + \frac{{ - 1}}{2}\\ = \left( {\frac{3}{4} + \frac{{ - 1}}{2}} \right) + \frac{{ - 11}}{{15}}\\ = \left( {\frac{3}{4} + \frac{{ - 2}}{4}} \right) + \frac{{ - 11}}{{15}}\\ = \frac{1}{4} + \frac{{ - 11}}{{15}}\\ = \frac{{15}}{{60}} + \frac{{ - 44}}{{60}}\\ = \frac{{ - 29}}{{60}}\end{array}\)